整数問題1

natsuneko 自動ジャッジ 難易度: 数学 > 高校数学
2023年11月2日18:10 正解数: 26 / 解答数: 38 (正答率: 68.4%) ギブアップ数: 1
整数

全 38 件

回答日時 問題 解答者 結果
2025年10月31日19:52 整数問題1 poinsettia
正解
2025年7月28日21:28 整数問題1 unknown
不正解
2025年5月13日19:30 整数問題1 Weskdohn
正解
2025年5月10日21:23 整数問題1 katsuo_temple
正解
2025年4月11日18:43 整数問題1 Ichijo
正解
2025年4月11日18:42 整数問題1 Ichijo
不正解
2025年4月3日20:31 整数問題1 yu23578
正解
2025年2月24日22:25 整数問題1 Tehom
正解
2024年8月28日19:16 整数問題1 katsuo.tenple
正解
2024年8月27日5:15 整数問題1 katsuo.tenple
不正解
2024年8月27日5:11 整数問題1 katsuo.tenple
不正解
2024年7月30日22:07 整数問題1 iwashi
正解
2024年7月30日21:47 整数問題1 iwashi
不正解
2024年7月27日11:42 整数問題1 SU-JACK
正解
2024年7月27日11:36 整数問題1 SU-JACK
不正解
2024年6月1日17:47 整数問題1 shakayami
正解
2024年6月1日17:47 整数問題1 shakayami
不正解
2024年4月15日11:30 整数問題1 simasima
正解
2024年4月3日22:38 整数問題1 orangekid
正解
2024年3月20日13:55 整数問題1 yozora184
正解
2024年3月7日20:04 整数問題1 shoko_math
正解
2024年3月5日9:24 整数問題1 orangekid
正解
2024年3月5日9:21 整数問題1 orangekid
不正解
2023年12月10日11:40 整数問題1 mogura
正解
2023年12月4日17:16 整数問題1 MARTH
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

C

nmoon 自動ジャッジ 難易度:
2年前

72

問題文

正整数 $a , b$ の最大公約数を $g(\not=1)$,最小公倍数を $l$ としたとき,以下が成立しました.

$$\dfrac{l - 1}{g - 1} = 100$$

このときの $(a , b)$ の組としてあり得るものを全て求め,$a + b$ の総和を求めてください.

解答形式

正整数で答えて下さい.

B

nmoon 自動ジャッジ 難易度:
2年前

51

問題文

$-1\leq k \leq 1$ を満たす実数 $k$ において,$10k + 11\sqrt{1-k^2}$ の最大値を $2$ 乗したものを求めてください.

解答形式

正整数で答えて下さい.

A

nmoon 自動ジャッジ 難易度:
2年前

47

問題文

$11 \times 11$ の長方形のマスのうちいくつかを次の条件を満たしながら黒色に塗っていきます.

  • 黒色に塗られた任意の $2$ つのマスは辺を共有しない(頂点は共有しても良い).

このとき,黒色に塗ることができるマスの数は最大でいくつですか.

解答形式

正整数で答えて下さい.

単純な整数問題

adg 自動ジャッジ 難易度:
19月前

31

問題

自然数a b c について
abc-ab-a=17
a<b<c
となる自然数のa b c の組の数を答えなさい

解答形式

半角数字で答えてください

初投稿

Butterflv 自動ジャッジ 難易度:
2年前

23

問題文

任意の二次関数$\ f\ $についてある$\ \theta \ (0\le \theta \le 2\pi)$があって,$\ xy$座標平面上で$\ y=f(x)\ $を$\ \theta \ $反時計回りに回転させたものを考える.$\ $これがある関数$\ g(x)\ $で$\ y=g(x)\ $と表せるときの$\ \theta\ $としてありうるものの総和を$\ S\ $とするとき$\ S\ $を超えない最大の整数を回答して下さい.

解答形式

整数で回答してください.

整数問題2

natsuneko 自動ジャッジ 難易度:
20月前

18

問題文

正整数 $N$ が $2$ で割り切れる最大の回数を $v_2 (N)$ で表すことにします.
(例 : $v_2(6) = 1, \ v_2(16) = 4$)
このとき,
$$\sum_{i = 1}^{1024} \sum_{j = 1}^{1024} \sum_{k = 1}^{1024} v_2 ( \textrm {gcd} (i, j, k))$$
の値を解答して下さい. ( $\textrm{gcd}(i,j,k)$ で $i,j,k$ の最大公約数を表しているとします.)

解答形式

半角数字で解答して下さい.

初等幾何サンプル問題

bzuL 自動ジャッジ 難易度:
20月前

28

問題文

三角形 $ABC$ の外接円を $\Gamma$ とします.辺 $BC$ 上に点 $X$ をとります.$B,X$ を通り,$\Gamma$ と接する円を $\Omega_1$ とし,$C,X$ を通り,$\Gamma$ と接する円を $\Omega_2$ とします.$\Omega_1$ と $\Omega_2$ は二点で交わっており,$X$ でない方の交点を $Y$ とします.直線 $XY$ は点 $A$ を通り,線分 $XC$ の垂直二等分線も点 $A$ を通りました.
$$BX = 4,CX=1$$を満たす時,三角形 $ABC$ の面積の二乗を求めてください.ただし,求める値は互いに素な二つの正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

BMC002-E

MARTH 自動ジャッジ 難易度:
2年前

14

直方体 $ABCD-EFGH$があり, $AB=\sqrt{2},AD=2023\sqrt{2},AE=2024\sqrt{2}$ です. 三角形 $BDE$ の面積を求めてください.

座王001(サドンデス3)

shoko_math 自動ジャッジ 難易度:
20月前

13

問題文

$101\times101$ のマス目の各マスには $0,1$ のいずれかが書かれており,どの $2\times2$ のマス目についても $0,1$ が少なくとも $1$ つずつは書き込まれているとき,マス目に書かれた数の和の最大値を求めてください.

解答形式

半角数字で解答してください.

自然数の分割

noname 自動ジャッジ 難易度:
21月前

17

桁数が偶数の自然数$n$の各位を$2$桁ごとに分割し、そうしてできる自然数の和を$S(n)$のする。例えば、
$S(2024)=20+24=44,S(120321)=12+3+21=36$
である。
さて、
$n+S(n)=5233$
を満たすような$n$を全て求めよ。

解答形式

$n$の値を整数でお答えください。

ΠMC002 A

wasab1 自動ジャッジ 難易度:
2年前

55

問題文

素数 $p$ に対して,$\dfrac{1}{p}$ を小数表記したときに循環する長さを $\Pi(p)$ で表します.正整数 $n$ に対し,$\Pi(p)=n$ なる $p$ のうち最小のものを $M(n)$ とするとき,以下の値を求めてください.ただし,有限小数の場合循環はしないとします.
$$M(1)+M(2)+M(3)+M(4)+M(5)+M(6)$$

解答形式

答えとなる数字のみを解答してください.

SMC100(問題5)

shoko_math 自動ジャッジ 難易度:
20月前

44

問題文

正の整数 $n$ に対し,$n$ の正の約数の個数を $f(n)$ と表します.
$f(f(n))=5$ となる最小の正の整数 $n$ を求めてください.

解答形式

半角数字で解答してください.