鋭角三角形 $ABC$ について, 垂心を $H$, 内心を $I$, 外心を $O$ とし, また, $C$ から $AB$ に下した垂線の足を $D$, $B$ から $AC$ に下した垂線の足を $E$, $A$ から $BC$ に下した垂線の足を $F$ とします. すると, $H,I,O$ は相異なり, かつ $AH=AO=10,HI:HO=41:80$ が成立しました. このとき, $DF+EF$ は互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ によって, $\cfrac{b \sqrt{c}}{a}$ と表されるため, $a+b+c$ の値を解答して下さい.
半角整数値で解答して下さい.
この問題を解いた人はこんな問題も解いています