OMC没問5

natsuneko 自動ジャッジ 難易度: 数学 > 高校数学
2023年12月31日7:00 正解数: 4 / 解答数: 4 (正答率: 100%) ギブアップ数: 0
初等幾何

問題文

鋭角三角形 $ABC$ について, 垂心を $H$, 内心を $I$, 外心を $O$ とし, また, $C$ から $AB$ に下した垂線の足を $D$, $B$ から $AC$ に下した垂線の足を $E$, $A$ から $BC$ に下した垂線の足を $F$ とします. すると, $H,I,O$ は相異なり, かつ $AH=AO=10,HI:HO=41:80$ が成立しました. このとき, $DF+EF$ は互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ によって, $\cfrac{b \sqrt{c}}{a}​​$ と表されるため, $a+b+c$ の値を解答して下さい.

解答形式

半角整数値で解答して下さい.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

OMC没問3

natsuneko 自動ジャッジ 難易度:
2年前

4

問題文

$AB:AC=5:3$ を満たす鋭角三角形 $ABC$ があり, 線分 $AB$ 上の点 $X$ と線分 $AC$ 上の点 $Y$ が$XY∥BC$ を満たしています. また, 三角形 $AYB$ の外接円と三角形 $AXC$ の外接円の交点のうち, $A$ でない方を $P$ とすると, $P$ は線分 $BC$ 上にありました. このとき, 三角形 $ABC$ の外接円と直線 $AP$ の交点のうち, $A$ でない方を $Q$ とし, 直線 $AP$ と線分 $BC$ の垂直二等分線の交点を $R$ とします. また, 線分 $PR$ を直径とする円と三角形 $ABC$ の外接円は $2$ 点 $S,T$ で交わり, 直線 $ST$ と直線 $PQ$ の交点を $U$ とすると, $PU=QU=5$ となりました. このとき, 線分 $AR$ の長さを求めて下さい. ただし, 答えは正整数 $a,b$ を用いて $a +
\sqrt{b} $ と表されるため, $a+b$ の値を解答して下さい.

解答形式

正整数値を解答して下さい.

OMC没問6

natsuneko 自動ジャッジ 難易度:
22月前

6

問題文

三角形 $ABC$ の内接円と $BC$ の接点を $D$, 三角形 $ABC$ の $\angle A$ 内の傍接円と $BC$ の接点を $E$ とし,直線 $AD$ と $\angle A$ 内の傍接円の交点のうち,$A$ から遠い方を $F$ とします.すると,
$$\angle DAE=30^\circ, \ AF=18, \ AB+CD=12$$

が成立しました.このとき,三角形 $DAE$ の面積の $2$ 乗を求めて下さい.

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるため,$a+b$ の値を解答して下さい.

ΠMC002 G

wasab1 自動ジャッジ 難易度:
2年前

14

問題文

三角形 $ABC$ について,内心を $I$ とし,$AD=AB=EB$ なる点 $D, E$ をそれぞれ辺 $AC, BC$ 上にとります. いま,円 $CDE$ と $ID, IE$ の交点をそれぞれ $P(\neq D), Q(\neq E)$ とすると,$AP$ は円 $CDE$ に接しました. $AI$ と円 $ABC$ の交点を $M(\neq A)$ とすると,$AI×IM=233, IP=19$ が成立しました. $MQ$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を求めてください.

解答形式

$a+b$ を求めてください.

bMC_H

bzuL 自動ジャッジ 難易度:
16月前

16

問題文

正の実数に対して定義され,正の実数値を取る関数 $f$ であって,任意の正の実数 $x,y$ に対して,
$$
f(x)f(yf(x))=2024f(x+2024y)
$$
を満たすもののうち, $f(1)$ が整数になるものについて,$f(2)$ の整数部分としてありうる数はいくつありますか.

解答形式

半角数字で解答してください.

三角形の面積の和

Fuji495616 自動ジャッジ 難易度:
19月前

4

問題文

$∠$A=69°、$∠ $B=66°、$∠ $C=45°である三角形ABCがあります。辺AC上にAB=DBとなる点Dをとり、辺BC上にAB=AEとなる点Eをとりました。DBとEAの交点をFとします。三角形AFBの周りの長さが12cmの時、三角形ABCの面積の2倍と三角形ABFの面積の和は何cm$^2$ですか。

解答形式

半角数字で入力してください。
例)10

F

wasab1 自動ジャッジ 難易度:
18月前

12

問題文

$AB<AC$ なる三角形 $ABC$ について,$\angle A$ (内角) の二等分線と $BC$,円 $ABC$ の交点をそれぞれ $D, M(\neq A)$,$A$ から $BC$ に下ろした垂線の足を $E$,$AC$ の中点を $N$,円 $ENC$ と円 $ABC$ の交点を $X(\neq C)$,円 $XMD$ と $BC$ の交点を $P(\neq D)$,$PM$ の中点を $Q$ とします.
$$AB=9, AC=14, QN=8$$
であるとき,$BC$ の長さは正整数 $a, b, c$ を用いて $\dfrac{a\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で解答してください.

400G

poino 自動ジャッジ 難易度:
16月前

9

問題文

三角形 $ABC$ の垂心を $H$ とし、$AH$ と $BC$ の交点を $D$、$BC$ の中点を $M$ とすると、$B,D,M,C$ がこの順に並びました。$AH$ を直径とする円と $AM$ の交点のうち $A$ でない方を $X$ とすると、$∠CXM=∠BAM$ でした。$BD=23,DM=42$ のとき、三角形 $ABC$ の面積を解答してください。

解答形式

半角数字で入力してください。


問題文

$n$ を $3$ 以上の整数とする。点 $\mathrm{O}$ を中心とする、半径 $1$ の円の形をしたピザがある。ピザの周上には、等間隔に点 $\mathrm{P}_1,\ldots,\mathrm{P}_n$ が並んでいる。

線分 $\mathrm{OP}_1$ 上に、線分 $\mathrm{OO'}$ の長さが $d$ となるような点 $\mathrm{O'}$ をとる。ここで $0< d < 1$ は定数である。ピザを線分 $\mathrm{O'P}_1,\ldots,\mathrm{O'P}_n$ によって分割し、分けられた $n$ 個のピザのうち線分 $\mathrm{P_1P_2,P_2P_3,\ldots, P_nP_1}$ を含む部分の面積を、それぞれ $S_1,\ldots,S_n$ とする。

$S_i$ の 平均はもちろん $\displaystyle \bar{S}= \frac{1}{n}\sum_{i=1}^{n}S_i=\frac{\pi}{n}$ である。では、$S_i$ の分散 $\displaystyle \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(S_i-\bar{S})^2$ はどうなるだろうか。以下の空欄を埋めよ。

(1)$\displaystyle \frac{\sigma ^2}{d^{\alpha}}$ が $d$ によらない定数となるような $\alpha$ の値は $\alpha=\fbox{ア}$ である。$n=12$ のとき、$\sigma^2$ を具体的に計算すると

$$
\sigma ^2 = \frac{\fbox{イ}-\sqrt{\fbox{ウ}}}{\fbox{エ}}d^{\fbox{ア}}
$$

である。

(2)極限 $\displaystyle \lim_{n\to\infty}n^{\beta}\sigma^2$ が $0$ でない有限の値に収束するような $\beta$ の値は $\beta=\fbox{オ}$ である。$\displaystyle d=\frac{1}{12\pi}$ のとき、その極限値は

$$
\lim_{n\to\infty}n^\fbox{オ}\sigma^2 = \frac{\fbox{カ}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキクケ」を半角で2行目に入力せよ。
なお、「ア」や「オ」には0や1が入ることもありうる。
また、分数はできるだけ約分された形で、根号の中身が最小となるように答えよ。
3行目以降に改行して回答すると、不正解となるので注意せよ。

OMC没問4

natsuneko 自動ジャッジ 難易度:
23月前

36

問題文

下図のようにブロックがピラミッド状に積んであり,各ブロックに $1$ つずつ整数を割り当てていきます.このとき,最下段に並ぶブロックが $N$ 個であるとき,以下の条件を満たすように整数を割り当てることとします.
・ 最下段の左端のブロックには $1$ を,右端のブロックには $N−2$ を,また左から $i$ 番目のブロック $(2 \leq i \leq N−1)$ には $i−1$ をそれぞれ割り当てる.
・最下段以外のブロックには,そのすぐ下に位置する左右 $2$ つのブロックに割り当てられた数の積を割り当てる.

最も上にあるブロックに割り当てられた整数を $N−1$ で割った余りを $f(N)$ とします.このとき,$f(10^9 + 8) + f(10^9 + 404)$ の値を解答して下さい.ただし, $10^9 + 7, \ 5×10^8 + 3, \ 10^9 + 403, \ 5×10^8 + 201$ はいずれも素数であることは既知としてよいです.

解答形式

例)半角数字で解答して下さい.

ダーツ

J_Koizumi_144 自動ジャッジ 難易度:
23月前

9

問題文

$p$を$0$以上$1$以下の実数とします.$A$と$B$の二人は,円形の的を用いて次のようなダーツ遊びをします.

  • $A,B,A,B,\dots$の順に,的に向かって交互に矢を投げる.
  • $A$は直前に$B$が投げた矢よりも中心に近い位置に矢が刺されば成功となる.ただし$1$回目は必ず成功とみなす.
  • $B$は直前に$A$が投げた矢よりも中心から遠い位置に矢が刺されば成功となる.
  • $n$回目に矢を投げたプレイヤーは,成功すると$p^n$点を得る.成功しなかった場合,その時点でゲームを終了する.

矢の刺さる位置が的の中で一様ランダムに決まると仮定するとき,ゲームが終了するまでに$A$が得られる得点の期待値を$f(p)$とし,$B$が得られる得点の期待値を$g(p)$とします.$f(p)=\dfrac{20}{21}$であるとき,$g(p)$の値は互いに素な正整数$a,b$を用いて$\dfrac{b}{a}$と表せるので,$a+b$を解答してください.

解答形式

半角数字で入力してください.

自作問題5

iwashi 自動ジャッジ 難易度:
16月前

4

問題文

実数$x$は以下の条件をすべて満たす。

  • $x$は有理数であり整数でない。
  • $x$は$10$より大きい。
  • $x$を既約分数で表したとき、分母は$20$であり分子は$17$の倍数である。
  • $x-10$の小数点第一位を四捨五入した値と$\sqrt{x}$の小数点第一位を四捨五入した値は等しい。

このような$x$全てについて、$20x$の総和を求めよ。

問題

wasab1 自動ジャッジ 難易度:
8月前

8

.