${}$ 西暦2024年問題第3弾です。今回は中学入試風の規則性の問題となりました。軽く解いてやってください。
${}$ 解答は黒石の個数を単位なしでそのまま入力してください。 (例)103個 → $\color{blue}{103}$
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
以下の極限値を求めよ。
$$\lim_{n\rightarrow{\infty}}\biggr(\lim_{x\rightarrow{0}}\prod_{k=1}^n\frac{kx}{\sin(k+1)x}\biggr) $$
${}$ 西暦2024年問題第6弾です。いよいよ整数問題のお出ましとなりました。ある程度は手を動かす必要がありますが、あることに気づけば調べる候補をぐっと減らすことができます。約数の個数を求めるのが面倒な方はWolfram|Alpha https://www.wolframalpha.com なども併用して構いません。
${}$ 解答は求める$n$の最小値をそのまま入力してください。 (例)$n=2106$ → $\color{blue}{2106}$
${}$ 西暦2024年問題第4弾です。今回は連分数を素材にしてみました。一風変わった解き心地の問題をお楽しみください。
${}$ 解答は有理数$a$と$b$の値を2行に分けて入力してください。値が整数のときにはそのまま整数表現で、非整数のときには既約分数○/△の形で入力することにします。「$a=$」「《1行目》」などの入力は必要ありません。 (例)$a=2024$、$b=\dfrac{1}{4}$ → 《1行目》$\color{blue}{2024}$、《2行目》$\color{blue}{1/4}$
${}$ 西暦2024年問題第5弾です。今回は8の倍数に注目した場合の数の問題を用意しました。数え漏らしに気をつけてサクッと解いてやってください。
${}$ 解答は指定の場合の数を単位なしでそのまま入力してください。 (例)105通り → $\color{blue}{105}$
【補助線主体の図形問題 #124】 年始は西暦を織り込んだ数学・パズルの問題をお送りしてきましたが、また日曜夜通例の「補助線主体の図形問題」に戻ります。変わらぬご愛顧ををどうかよろしくお願いします。 今回は、補助線を使えば計算量減を図れ、補助線を使わないと面倒な計算を強いられるという問題を用意しました。補助線解法を期待しているのですが、力技で解くのもアリです。お好きなようにお楽しみください。
${ \def\cm{\thinspace \mathrm{cm}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #126】 今週の図形問題です。隙あらば暗算で処理できる程度の問題を好んで出題しているのですが、今回は暗算処理は厳しいかもしれません。紙&ペンをご用意の上、挑戦していただければと思います。
【補助線主体の図形問題 #115】 今週の図形問題です。今回は重めの問題にしてみました。とはいえ、補助線が活躍するのはいつも通りです。じっくり腰を据えて挑戦してください!
数列$a_n$を次のように定める。 $a_1=1$ $a_n=n^{a_{n-1}}$ このとき、以下の問いに答えなさい。 (1)$a_{2023}$の一の位はいくつか求めよ。 (2)$a_{2024}$の一の位はいくつか求めよ。 (3)$a_{2024}$の百の位はいくつか求めよ。
(1) ~~~ (2) ~~~ の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。 解答は数字のみお書きください。
以下の値を求めてください。 $$ \begin{align} \sum_{k=1}^{33333^2+200\cdot33333}\sqrt{\frac{2k+19999-2\sqrt{k^2+19999k+99990000}}{k^2+19999k+99990000}} \end{align} $$
答えは互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表されるので、 $p+q$の値を解答してください。
(誰かがもう作ってそうです...知っている方がいれば教えてほしいです)
扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。
半角数字で解答してください。
【補助線主体の図形問題 #109】 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。
図のように正五角形と正三角形が配置されています。緑の$x$で示した角度を求めてください。 なお、赤で示した2つの線分は長さが等しく、青で示した角は直角です。
度数法で、単位を付けずに0以上180未満の数を半角数字で解答してください。