注:すみません,ネタ問題です.TeXも使っていません.
任意の自然数nについて,約数の総和をp(n),約数の個数をq(n)とすると,整数の定数kを用いてp(n)=k×(q(n))と表せます.kを求めてください.
半角の整数で解答してください. 余計な空白や改行を含まないよう注意してください.
中学以降では約数には負の約数も...
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
素数 $p,q$ が $$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
次の計算をせよ。 $$ {}_{12}{\mathrm{C}}_{1}\quad+{}_{12}{\mathrm{C}}_{2}\quad+{}_{12}{\mathrm{C}}_{3}\quad+……+{}_{12}{\mathrm{C}}_{12}\quad $$
半角算用数字で解答してください
$\dfrac{777777777}{888888}$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.
半角数字で解答してください.
$ $ 地理奈ちゃんは,$1$ を含んだ数列をいくつか思い浮かべようとしています. $ $ そこで,以下のルールをすべて守った数列を,良い数列と呼ぶことにします:
$ $ この時,良い数列は全部でいくつありますか?
非負整数を半角で解答してください.
次の定積分を求めよ。 $$ \int_{-1}^1\quad(x^{101}+2x^{99}+3x^{97}+・・・+51x)dx $$
半角数字のみを使って解答してください。
整数 $n$ について,$\dfrac{10^n+11}{3}$ が平方数になるものは存在しますか?存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.
存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.
${999}$を2以上の最小の$2$つの立方数の差で表せ。
a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。 (例:15^3-3^3なら解答は153)
三角形 $ABC$ について,$\angle A$ の二等分線と $BC$ の交点を $D$,円 $ABD$ と $AC$ の交点を $E$,円 $BEC$ と $AB$ の交点を $F$ とし,$AD$ と $FC$ の交点を $P$ とするとき,$AF=2, AC=3, PE=1$ が成立しました.$AB$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.
$ $ 地理奈ちゃんは,$10$ 面サイコロを $4$ つ持っており,それを $4$ つ全て同時に $1$ 回振ることを考えます.ここでの $10$ 面サイコロは,$1$ 以上 $10$ 以下の整数の目が同様に確からしい確率で $1$ つ出るサイコロとします. $ $ また,サイコロの出目により,それぞれのサイコロに対して,成功数を以下のように定義します.
$ $ この時,$4$ つのサイコロを振って,その成功数の合計が $0$ 以下になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ を解答してください.
【追記】 難しすぎるという意見をいただいたので難易度を2→3に変更しました。
さるのも答えが9になる足し算の式を自分で一つ思いついたようです。さるのの考えた足し算の式を当ててください。 ただし、さるのの考えた足し算の式が解答した文字列の(連続していなくても良い)部分文字列にあれば正解とします。 例えば、「129+1341398+89006」と解答した場合、さるのの考えた足し算の式が「9」や「1+8」や「2+1+6」だった場合には正解ですが、「2+7」や「1+2+3+2+1」や「1+2+6」だった場合は不正解と判定されます。
例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。 「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。
足し算の式の厳密な定義 (これは全難易度で共通です) 足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。 その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。
半角で1行で解答してください。「」は付けないでください。 例えば「129+1341398+89006」と解答したい場合は次のように解答してください。 129+1341398+89006
正の整数 $n$ に対し,$n$ の正の約数の個数を $f(n)$ と表します. $f(f(n))=5$ となる最小の正の整数 $n$ を求めてください.
一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります. このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.
ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.
求めるべき値は非負整数値として一意に定まるので,これを解答してください.