約数ひっかけ問題

Americium243 自動ジャッジ 難易度: 数学 > 中学数学
2024年3月27日15:39 正解数: 42 / 解答数: 44 (正答率: 95.5%) ギブアップ数: 0
ネタ問題

問題文

注:すみません,ネタ問題です.TeXも使っていません.

任意の自然数nについて,約数の総和をp(n),約数の個数をq(n)とすると,整数の定数kを用いてp(n)=k×(q(n))と表せます.kを求めてください.

解答形式

半角の整数で解答してください.
余計な空白や改行を含まないよう注意してください.


ヒント1

中学以降では約数には負の約数も...


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

2人で肩にpを乗せて

kusu394 自動ジャッジ 難易度:
20月前

23

問題文

素数 $p,q$ が
$$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

nCrの足し算

tsukemono 自動ジャッジ 難易度:
19月前

63

問題文

次の計算をせよ。
$$
{}_{12}{\mathrm{C}}_{1}\quad+{}_{12}{\mathrm{C}}_{2}\quad+{}_{12}{\mathrm{C}}_{3}\quad+……+{}_{12}{\mathrm{C}}_{12}\quad
$$

解答形式

半角算用数字で解答してください


問題文

$\dfrac{777777777}{888888}$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

1を含んだ規則的な数列

Tiri7_Ma13a_ 自動ジャッジ 難易度:
21月前

52

問題文

$ $ 地理奈ちゃんは,$1$ を含んだ数列をいくつか思い浮かべようとしています.
$ $ そこで,以下のルールをすべて守った数列を,良い数列と呼ぶことにします:

  • $1$ 以上 $9$ 以下の整数から $3$ つを選んでいる数列である.
  • その数列は公差が $0$ でない等差数列である.
  • 数列のどこか $1$ 項に必ず $1$ を含んでいる.

$ $ この時,良い数列は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

積分

tsukemono 自動ジャッジ 難易度:
22月前

30

問題文

次の定積分を求めよ。
$$
\int_{-1}^1\quad(x^{101}+2x^{99}+3x^{97}+・・・+51x)dx
$$

解答形式

半角数字のみを使って解答してください。

ΠMC002 E

wasab1 自動ジャッジ 難易度:
2年前

143

問題文

整数 $n$ について,$\dfrac{10^n+11}{3}$ が平方数になるものは存在しますか?存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.

解答形式

存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.

知ってたら簡単な整数問題

noname 自動ジャッジ 難易度:
22月前

27

${999}$を2以上の最小の$2$つの立方数の差で表せ。

問題を一部訂正しました。毎度毎度誠に申し訳ございません。問題ミスがあったためこれまでの解答は正解にしました。

解答形式

a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。
(例:15^3-3^3なら解答は153)

KOTAKE杯007(J)

MrKOTAKE 自動ジャッジ 難易度:
5月前

24

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり, $A$ から $BC$ に下ろした垂線の足を $H$ とし,線分 $AH$ 上に $\angle ABP = \angle ACP$ を満たす点 $P$ をとります.また,線分 $BC$ と三角形 $ACP$ の外接円の交点のうち $C$ でないものを $D$ とし,直線 $BP,AD$ の交点を $E$ とすれば,
$$BP=CD=5,\quad PE=3$$
が成立したので三角形 $ABC$ の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

分数の足し算

tsukemono 自動ジャッジ 難易度:
22月前

35

問題文

次の計算をせよ。
$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}
$$

解答形式

分子/分母 の形で解答してください
既約分数で解答してください
例 1/3

C

wasab1 自動ジャッジ 難易度:
19月前

40

問題文

三角形 $ABC$ について,$\angle A$ の二等分線と $BC$ の交点を $D$,円 $ABD$ と $AC$ の交点を $E$,円 $BEC$ と $AB$ の交点を $F$ とし,$AD$ と $FC$ の交点を $P$ とするとき,$AF=2, AC=3, PE=1$ が成立しました.$AB$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.

解答形式

半角数字で解答してください.

PDC009 (C)

poinsettia 自動ジャッジ 難易度:
3月前

29

問題文

正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.

PDC009 (E)

poinsettia 自動ジャッジ 難易度:
3月前

27

問題文

$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.

  • $(1,1)$ に $1$ を,$(1,2)$ と $(2,1)$ に $2$ を書き込む.
  • $k\geq 3$ について,すべてのマスに整数が書き込まれるまで以下を繰り返す: $k-2$ が書き込まれているいずれかのマスと,辺を共有せず頂点のみを共有しているマスであり,まだ整数が書き込まれていないようなものすべてに $k$ を書き込む.

いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?