e進数!?

amberGames-777 自動ジャッジ 難易度: 数学 > 高校数学
2024年3月28日20:00 正解数: 8 / 解答数: 13 (正答率: 61.5%) ギブアップ数: 1
数学 ネイピア数

全 13 件

回答日時 問題 解答者 結果
2025年5月14日17:56 e進数!? Weskdohn
正解
2025年4月25日0:08 e進数!? OYU__0YU
不正解
2025年4月25日0:07 e進数!? OYU__0YU
不正解
2024年6月28日10:08 e進数!? ゲスト
正解
2024年4月18日14:04 e進数!? tima_C
正解
2024年4月6日20:06 e進数!? iwashi
正解
2024年4月6日20:05 e進数!? iwashi
不正解
2024年3月29日22:29 e進数!? sha256
正解
2024年3月29日22:28 e進数!? sha256
不正解
2024年3月29日14:15 e進数!? Chuteiri
正解
2024年3月29日6:12 e進数!? natsuneko
正解
2024年3月29日5:17 e進数!? Butterflv
正解
2024年3月29日5:17 e進数!? Butterflv
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

方程式の実数解

RentoOre 自動ジャッジ 難易度:
14月前

7

問題文

$x$ についての方程式 $xe^{2\sqrt{x}}=9(\log{3})^2$ の実数解を求めよ。

解答形式

解をすべて答えてください。値の小さい順に1行目から入力してください。
なお,解答にあたって,特殊な数式は次のように入力してください。

対数:$\log_n{m}$ = \log_{n}{m}, $\log{m}$ = \log{m}
指数($\sqrt{m} = m^{\frac{1}{2}}$もすべて指数として入力してください):$n^{m}$ = n^{m}
分数:$\frac{a}{b}$ = \frac{a}{b}

12月前

4

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33

500C

MARTH 自動ジャッジ 難易度:
11月前

9

$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて,
$$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$
の総和を $f(n)$ とします.
$f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.

Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度:
2月前

5

問題文

10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.

備考

本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.

Two sequences (学コン2025-2-6)

Lim_Rim_ 自動ジャッジ 難易度:
2月前

4

問題文

$p=2^{10} - 3$とおき, 数列$a_n, b_n$を以下の式で定める.
\begin{aligned}
&a_0=0,\quad a_1 = 1,\quad a_{n+2} = 2a_{n+1} +2a_n & (n=0,1,\dots) \\
&b_0=0, \quad b_1 = 1,\quad b_{n+2} = 2b_{n+1} +(p+2)b_n & (n=0,1,\dots)
\end{aligned}

(1) $a_n,b_n$をそれぞれ$n$で表せ.
(2) $a_{1024}$を$p$で割った余りを求めよ. ただし, 整数$m$に対して$m^p\equiv m\pmod{p}$であることを用いてもよい.

解答形式

(2) の解答を入力してください((1)は解答参照)

備考

本問は大学への数学2025年2月号6番に掲載された自作問題です.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
17月前

6

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
16月前

6

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.

ちょっと長い方程式

noname 自動ジャッジ 難易度:
14月前

6

問題文

$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$

少し問題を変更いたしました。ご迷惑をおかけしてしまい申し訳ございません。

解答形式

$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。

二項係数の和と極限

nps 自動ジャッジ 難易度:
3月前

9

問題文

解答形式

半角で入力してください。
また、必要であればe,πを用いてください。

No.02 集合と要素の個数

Prime-Quest 自動ジャッジ 難易度:
16月前

5

問題

$(1)$ 集合 $S_n=\{nx\mid x^3\leqq 2x^2+5x-6\}$ に対し,整数 $k\notin\overline{S_1\cap S_2}\cup S_3$ は何個あるか.
$(2)$ $3$ 桁の素数は $200$ 個未満か.

解答形式

命題は真なら $1$,偽なら $0$ として,$(1),(2)$ の和を半角数字で入力してください.

400A

MARTH 自動ジャッジ 難易度:
14月前

8

関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.

  • $f_{0}(x)=e^{e^x}$
  • $f_{n}(x)=\dfrac{d}{dx}f_{n-1}(x)\quad (n=1,2,\dots)$.

また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.

  • $\displaystyle A_n=\lim_{x\rightarrow-\infty}e^{-x}f_{n}(x)$ .
  • $\displaystyle B_n=\lim_{x\rightarrow-\infty}e^{-x}\big(e^{-x}f_{n}(x)-A_n)$.

$B_{24}$ の値を求めてください.

Triangle T

Lim_Rim_ 自動ジャッジ 難易度:
2月前

5

問題文

三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.

解答形式

$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は解説を参照してください。)

備考

2018年3月の大学への数学「読者と作るページ」に掲載された問題です。