OMC没問

Furina 自動ジャッジ 難易度: 数学 > 高校数学
2024年5月4日20:00 正解数: 5 / 解答数: 18 (正答率: 27.8%) ギブアップ数: 1

全 18 件

回答日時 問題 解答者 結果
2024年5月9日19:29 OMC没問 ゲスト
正解
2024年5月9日19:18 OMC没問 ゲスト
不正解
2024年5月9日19:16 OMC没問 ゲスト
不正解
2024年5月9日19:14 OMC没問 ゲスト
不正解
2024年5月9日17:35 OMC没問 ゲスト
不正解
2024年5月9日17:10 OMC没問 ゲスト
不正解
2024年5月9日17:03 OMC没問 ゲスト
不正解
2024年5月7日8:19 OMC没問 ゲスト
不正解
2024年5月6日1:32 OMC没問 bzuL
正解
2024年5月5日15:29 OMC没問 hiro1729
正解
2024年5月5日0:48 OMC没問 mogura
不正解
2024年5月5日0:15 OMC没問 natsuneko
正解
2024年5月4日23:05 OMC没問 ゲスト
正解
2024年5月4日22:12 OMC没問 MARTH
不正解
2024年5月4日20:59 OMC没問 harulun
不正解
2024年5月4日20:46 OMC没問 harulun
不正解
2024年5月4日20:29 OMC没問 2_3_5_7
不正解
2024年5月4日20:18 OMC没問 2_3_5_7
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

円形じゃんけん

J_Koizumi_144 自動ジャッジ 難易度:
10月前

14

問題文

$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?

解答形式

半角数字で入力してください.

Make 10

J_Koizumi_144 自動ジャッジ 難易度:
10月前

15

$100\times 100$のマス目に整数(負でもよい)を書き込んで、各行・各列の積が全て$10$になるようにしたものを良い盤面と呼びます。良い盤面に書かれた数の$2$乗和をその良い盤面のスコアとします。
すべての良い盤面にわたるスコアの総和を$M$とするとき、$M$が$2$で割り切れる最大の回数を求めてください。

数列の問題

matsukichi 自動ジャッジ 難易度:
10月前

4

問題文

$2000$ 以下の非負整数 $a$ に対し,数列 $c_{n}$ が以下をみたします.
$$c_{1}=a, c_{2}=2000-a, c_{n+2}=c_{n+1}+c_{n}$$
このとき,$c_{2^{4333}}$ が $47^2$ の倍数となるような $a$ としてありうる値の総和を解答してください.

解答形式

半角数字で解答してください.

最小値

matsukichi 自動ジャッジ 難易度:
10月前

4

問題文

$a\lt c$ なる実数 $a, b, c$ が
$$\sqrt{(1+a^2)(1+b^2)}=\dfrac{(b+c)(c-a)}{1+c^2}$$
をみたすとき,$(8a+13b+21c)^2$ の取りうる最小値を解答してください.

解答形式

半角数字で解答してください.

最小値

sdzzz 自動ジャッジ 難易度:
7月前

8

問題文

$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$

解答形式

求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.

自作問題C1

imabc 自動ジャッジ 難易度:
7月前

6

問題文

以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.

  • $a_0=a_{20000}=0$ .
  • $k=0,1,…,19999$ について $|a_{k+1}-a_k|=1$ .

また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.

  • 以下の条件を全て満たす $1001$ 個の整数の組 $(x_0,x_1,…,x_{1000})$ の個数.
    $\quad$ ・ $k=0,1,…1000$ について $x_k$ は $0$ 以上 $20000$ 以下の 偶数
    $\quad$ ・ $k=0,1,…999$ について $x_k\lt x_{k+1}$ .
    $\quad$ ・ $a_{x_{1000}}=0$ .

階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.

解答形式

答えを入力してください.

自作問題A1

imabc 自動ジャッジ 難易度:
7月前

7

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.

bMC_E

bzuL 自動ジャッジ 難易度:
4月前

14

問題文

$10$ 進数での桁和が $2500$ となる正整数であって, $2024$ の倍数となるものうち,最小のものを $M$ とします.$M$ を $10$ 進表記したときの $10^{k-1}$ の位の値を $M_k$ としたとき,$1\leq M_k \leq 8$ を満たす $k$ の総積を $10000000$ で割った余りを答えてください.
ただし,以下の $10^n$ を $2024$ で割った余りに関する表を用いて構いません.

$$
\begin{array}{c:ccccccccc}
n & 3 &4 & 5 & 6 & 7 & 8 & 9 \\
\hline
10^n\pmod{2024} &1000 & 1904 &824& 144 & 1440& 232& 296
\end{array}\\\\
\begin{array}{ccccccccc}
10 & 11& 12 & 13 &14 & 15 & 16 & 17 & 18\\
\hline
936& 1264 & 496 &912 & 1024 &120 &1200 & 1880 & 584
\end{array}\\\\
\begin{array}{ccccccccc}
19 & 20 & 21 & 22 & 23 & 24 &25\\
\hline
1792 & 1728 & 1088 & 760 & 1528 & 1112 & 1000
\end{array}
$$

解答形式

半角数字で解答してください.
たとえば $M=9876543210$ であれば,$M_1=0,M_2=1,\ldots,M_{10}=9$ となるため,$1\leq M_k \leq 8$ を満たす $k$ の総積は $2 \times \cdots \times 9= 362880$ となります.

Matrix Triangle

MARTH 自動ジャッジ 難易度:
9月前

9

$n$ を正の整数とする.縦 $3$ 行,横 $3$ 列からなるマス目の各マスに $n,n+1,\ldots,n+8$ を重複なく書き入れる方法であって,以下を満たすものの数を $f(n)$ とします.

  • どの列,どの行についてもその $3$ つに書かれている $3$ 数を $3$ 辺の長さに持つ三角形が存在する.

ただし,回転や反転によって一致する数の書き込み方は,区別するものとします.$f(n)\lt3\times10^5$ を満たすとき,$f(n)$ としてあり得る最大の値を解答してください.


問題文

鋭角三角形 $ABC$ に対し,重心と垂心をそれぞれ $G,H$ とし,直線 $GH$ と辺 $AB,AC$ との交点をそれぞれ $D,E$ とし,直線 $AH$ と辺 $BC$ の交点を $F$ としたところ,$DH:HG=4:3,BF:FC=3:7$ となりました.
${AD}^2:{AE}^2$ は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください.

10月前

6

問題文

鋭角三角形ABCについて,外心をO,重心をG,垂心をH,内心をIとします.
$$AO=\dfrac{325}{24}, AH=\dfrac{125}{12}, AG=\sqrt{145}$$
であるとき,$AI$の2乗を答えてください.

解答形式

答えは非負整数なので非負整数値を入力してください.

自作問題1(組合せ)

contrail 自動ジャッジ 難易度:
7月前

19

問題文

三角柱 $ABC-DEF$ があり,いま点 $P$ は頂点 $A$ にいます.点 $P$ が隣り合う頂点に移動する操作を $12$ 回繰り返して点 $A$ に戻るように移動する方法すべてに対して,上下に移動する回数の総和を求めてください.

ただし上下に移動するとは,頂点 $A,B,C$ のいずれから頂点 $D,E,F$ のいずれかに移動すること,またその逆を意味します.

解答形式

半角数字で解答してください.