三角形 $ABC$ があり,以下が成り立っています:
$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$
いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.
半角数字で解答してください.
この問題を解いた人はこんな問題も解いています