以下の値を素数 $2017$ で割った余りを解答してください。ただし、$\lfloor x\rfloor$ は $x$ 以下の最大の整数を表します。
$\displaystyle\sum_{k=1}^{2023} \left\lfloor\dfrac{3}{7}×2^k\right\rfloor(-1)^{k+1}$
非負整数を半角で入力してください.
floor(x/7)=(x-(xを7で割ったあまり))/7です。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$n=1,2,3...、k=0,1,2...n-1$とします。
また、不等式$$a_1<a_2<...<a_n≦n$$
を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。
ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。
$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。 追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。 例)$nC2→n$ $2,2nCn→2n$ $n$
※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、
正の実数 $x,y,z$ が, $$ (6x+15y+8z)xyz=5 $$ を満たす時, $(5x+5y+4z)^2$ の最小値を求めてください.
半角数字で入力してください
△ABC(AB<AC)の垂心をH、外心をOとし、直線HOと辺AB,BCの交点をD,Eとし、点Eは線分BCを3:1に内分している。このとき、AD/DBの値を求めなさい。ただし、Bの側からD,H,O,Eの順に位置している。
互いに素な正の整数a,bを用いて、b/aの形で答えてください。 解答には AD/DB=b/aと答えてください。
$f(n)=n ^{15}+21n^{10}+147n^5+343$ とします. 正整数 $n$ に対して, $f(n)$ が $5^m$ で割り切れるような最大の非負整数 $m$ を $g(n)$ と定めます.$10000$ 以下の正整数 $k $であって $g(n)=k $ を満たす正整数 $n$ が存在するような $k$ の総積を $3343$ で割った余りを解答してください.ただし,$3343$ は素数です.
非負整数を解答してください.
以下の値を求めてください。 $$ \sum_{1\leqq m<n\leqq 9} \biggl(\cos\dfrac{m\pi}{10}+\cos\dfrac{n\pi}{10}+1\biggr)^3 $$
答えは正整数になるので、それを半角数字で解答してください。
ある数$N$は$714$進法で$\underbrace{1818\dots1818}_{\text{1430個}}0$と表されます。$N$の素因数に含まれない最小の素数は何でしょう?
半角数字で入力してください。
$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?
半角数字で入力してください.
三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,$AD,BC$の中点をそれぞれ$M,N$とする.$A N$と$EF$の交点を$P$とし,$DP$と$MN$の交点を$Q$,三角形$ABC$の外接円と$AQ$が再び交わる点を$R$としたとき,$$AN=10 AB=9 NR=3$$が成立した.このとき,$AC²$の値を解答してください.
半角で解答してください.
$p,q$を素数、$n$を整数とします。 $$ p^{4}+2q^{2}-2^{n}=635 $$ を満たす$p,q,n$の組$(p,q,n)$を全て求めてください。
$p+q+n$の値の総和を半角で解答してください。
${}$ 西暦2025年問題第5弾です。今回は覆面算風味の整数問題です。けれども、独特な解き心地があります。単一解であるのを前提にして構いませんので、じっくりと味わってください。
${}$ 解答は指定の積をそのまま入力してください。 (例)105 → $\color{blue}{105}$
以下の[条件]を満たす $3$ 桁の正の整数(つまり,$100$ 以上 $999$ 以下の正の整数)の組 $(A,B)$ すべてに対し,$A+B$ の値の総和を解答してください.
[条件] $A^2$ の下 $3$ 桁は $B$ であり,$B^2$ の下 $3$ 桁は $A$ である.
半角数字で解答してください.
nを素数、o,kを正の整数とする。
2ⁿ+5⁰=k²
をみたすn,o,kの組(n,o,k)をすべて求めよ。
答えとなるn,o,pの値の総和を回答してください