Sigma Problem

eq_K 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月8日13:11 正解数: 6 / 解答数: 11 (正答率: 54.5%) ギブアップ数: 0

問題文

以下の値を素数 $2017$ で割った余りを解答してください。ただし、$\lfloor x\rfloor$ は $x$ 以下の最大の整数を表します。

$\displaystyle\sum_{k=1}^{2023} \left\lfloor\dfrac{3}{7}×2^k\right\rfloor(-1)^{k+1}$

解答形式

非負整数を半角で入力してください.


ヒント1

floor(x/7)=(x-(xを7で割ったあまり))/7です。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

円形じゃんけん

J_Koizumi_144 自動ジャッジ 難易度:
10月前

14

問題文

$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?

解答形式

半角数字で入力してください.

自作3

soka 自動ジャッジ 難易度:
7月前

3

問題

$n=1,2,3...、k=0,1,2...n-1$とします。

また、不等式$$a_1<a_2<...<a_n≦n$$

を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。

ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。

解答形式

$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。
追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。
例)$nC2→n$ $2,2nCn→2n$ $n$

※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、

不等式

sdzzz 自動ジャッジ 難易度:
5月前

2

問題文

正の実数 $x,y,z$ が,
$$
(6x+15y+8z)xyz=5
$$
を満たす時, $(5x+5y+4z)^2$ の最小値を求めてください.

解答形式

半角数字で入力してください

OMC不採用問題改題その2

bzuL 自動ジャッジ 難易度:
8月前

18

問題文

$f(n)=n ^{15}+21n^{10}+147n^5+343$ とします.
正整数 $n$ に対して, $f(n)$ が $5^m$ で割り切れるような最大の非負整数 $m$ を $g(n)$ と定めます.$10000$ 以下の正整数 $k $であって $g(n)=k $ を満たす正整数 $n$ が存在するような $k$ の総積を $3343$ で割った余りを解答してください.ただし,$3343$ は素数です.

解答形式

非負整数を解答してください.

N4

orangekid 自動ジャッジ 難易度:
5月前

10

問題文

ある数$N$は$714$進法で$\underbrace{1818\dots1818}_{\text{1430個}}0$と表されます。$N$の素因数に含まれない最小の素数は何でしょう?

解答形式

半角数字で入力してください。

cosを含む総和

J_Koizumi_144 自動ジャッジ 難易度:
11月前

9

問題文

以下の値を求めてください。
$$
\sum_{1\leqq m<n\leqq 9} \biggl(\cos\dfrac{m\pi}{10}+\cos\dfrac{n\pi}{10}+1\biggr)^3
$$

解答形式

答えは正整数になるので、それを半角数字で解答してください。

座王001(N1)

shoko_math 自動ジャッジ 難易度:
8月前

10

問題文

以下の[条件]を満たす $3$ 桁の正の整数(つまり,$100$ 以上 $999$ 以下の正の整数)の組 $(A,B)$ すべてに対し,$A+B$ の値の総和を解答してください.

[条件] $A^2$ の下 $3$ 桁は $B$ であり,$B^2$ の下 $3$ 桁は $A$ である.

解答形式

半角数字で解答してください.

整数

you2024 自動ジャッジ 難易度:
35日前

4

nを素数、o,kを正の整数とする。

2ⁿ+5⁰=k²

をみたすn,o,kの組(n,o,k)をすべて求めよ。

答えとなるn,o,pの値の総和を回答してください

最小値

sdzzz 自動ジャッジ 難易度:
7月前

8

問題文

$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$

解答形式

求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.

幾何問題24/1/8

326_math 自動ジャッジ 難易度:
10月前

8

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

OMCBにありそう

sha256 自動ジャッジ 難易度:
19日前

16

問題文

初項が$1(a_1=1)$の数列{$a_n$}は、任意の正整数$n$に対し
$$
a_{n+1}^3-10a_na_{n+1}^2+31a_n^2a_{n+1}-30a_n^3=0
$$
を満たしている。
$a_{60}$としてあり得る値すべての総積を求めたい。
ただし答えは非常に大きいので、答えの正の約数の個数を1000で割ったあまりを答えよ。

解答形式

$0$以上$999$以下の整数を半角英数字で入力してください。

(11/7:一部問題文を修正)

17日前

11

問題文

$37^{2024}$ の十の位と一の位の数をもとめてください.

解答形式

$37^{2024}$ の十の位と一の位の数を空白で区切って1行に入力してください.
例えば $37^{2024}$ の十の位が $0$ で一の位が $2$ の場合は 0 2 のように入力してください。