五角形 $ABCDE$ は $\angle{A}=90°$ で,四角形 $BCDE$ は $1$ 辺の長さが $8$ の正方形になっています.$AC$ と $BD$ の交点を $P$ とし,$AP=PQ$ となる点 $Q$ を辺 $DE$ 上に取りました.$\angle{ACQ}=45°$ であるとき,$PQ$ の長さの $2$ 乗を求めてください。
非負整数を半角で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$ を満たすとき、 $$\frac{z}{y}=?$$
例)?に入る数値を入力してください。
$4$ 点 $A,B,C,D$ は同一円周上にあり,その内部(辺上を含まない)に点 $P$ をとります. また,線分 $AP,BP,CP,DP$ の垂直二等分線をそれぞれ $a,b,c,d$ とします. $a,b$ の交点を $E$,$b,c$ の交点を $F$,$c,d$ の交点を $G$,$d,a$ の交点を $H$ とすると,$4$ 点 $E,F,G,H$ は同一円周上にあり,四角形 $EFGH$ の二本の対角線は $P$ で交わりました. そして,以下が成立しました: $$HP=5,\quad HE=11,\quad EF=16$$ このとき,$HG$ の長さの二乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.
非負整数を半角で入力してください.
$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記: 回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します. この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように 並び替えただけの組は同一のものとみなします.
$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.
半角数字で入力してください.
$AB=7$,$AB>AC$を満たす$\triangle ABC$について、線分$AB$上に$AC=BD$となるように点$D$をとる。直線$BC$を対称の軸として点$D$を対称移動した点を点Eとし、線分$BE,DE$を結ぶ。ここで、線分$DE$と線分$BC$は交点を持った。この点を点$M$とする。さらに、$\angle BAC$の二等分線と線分$BC$の交点を点$F$としたとき、$\angle AFB=135°$であった。$CM+DM=3$のとき、凹五角形$ABEMC$の面積を求めよ。
単位を付けずに半角数字で解答してください。
次の方程式の整数解を求めよ。 ただし、$p, q$は非負整数である。 $$ x^2-15x+3^p-2^q=0 $$
半角数字で小さい順につなげて入力してください。 例 $x=-4,-1,0,3,4$の時 -4-1034
$AB=13,BC=14,CA=15$ を満たす三角形 $ABC$ において、外心を $O$、辺 $AB$ の中点を $M$、辺 $AC$ の中点を $N$、$A$ から辺 $BC$ に下ろした垂線の足を $D$ とします。また、円 $DMN$ と $AD$ の交点を $X$、$MN$ について $X$ と対称な点を $Y$ とします。このとき四角形 $BCOY$ の面積を求めてください。
半角数字で入力してください。
$\frac{1}{\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}$ を有理化し、その分母を答えよ。
既約分数にしてその分母を整数値でお答えください。
34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい
半角で、3人の班=Xで答えるものとする
【補助線主体の図形問題 #118】 今週の図形問題です。僕の問題にしては珍しく角の比が表に出た問題となりました。補助線の威力をぜひ感じ取ってください。
${ \def\cm{\thinspace \mathrm{cm}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
$(1)$ 集合 $S_n=\{nx\mid x^3\leqq 2x^2+5x-6\}$ に対し,整数 $k\notin\overline{S_1\cap S_2}\cup S_3$ は何個あるか. $(2)$ $3$ 桁の素数は $200$ 個未満か.
命題は真なら $1$,偽なら $0$ として,$(1),(2)$ の和を半角数字で入力してください.
$\triangle ABC$の辺$AB$上に点$D$が,辺$AC$上に点$E$がそれぞれある.また,辺$BC$上に2点$P,Q$があり,4点$B,P,Q,C$はこの順に並んでいる. $\triangle BDP$の外接円の$B$における接線と,$\triangle CEQ$の外接円の$C$における接線とが点$F$で交わっている. $AD=2,DB=4,AE=5,EC=3,BP=1,PQ=10,QC=1$のとき,$AF=\dfrac{a\sqrt{b}}{c}$である.ただし,$a,b,c$はいずれも正の整数であり,$a,c$は互いに素である.また,根号の内部は十分簡単になっている. $a+b+c$の値を求めよ.
半角数字で解答してください.