比例式っぽいやつ

SU-JACK 自動ジャッジ 難易度: 数学 > 高校数学
2024年7月21日21:49 正解数: 11 / 解答数: 12 (正答率: 91.7%) ギブアップ数: 0
高校数学 方程式 比例式

全 12 件

回答日時 問題 解答者 結果
2024年9月10日22:49 比例式っぽいやつ mits58
正解
2024年9月4日17:09 比例式っぽいやつ katsuo_temple
正解
2024年8月28日15:48 比例式っぽいやつ yuuu
正解
2024年8月27日22:19 比例式っぽいやつ mits58
正解
2024年8月24日0:55 比例式っぽいやつ katsuo.tenple
正解
2024年8月17日20:07 比例式っぽいやつ katsuo.tenple
正解
2024年8月15日0:57 比例式っぽいやつ nmoon
正解
2024年7月27日19:55 比例式っぽいやつ adapchi
正解
2024年7月25日10:21 比例式っぽいやつ natsuneko
正解
2024年7月23日23:47 比例式っぽいやつ Weskdohn
正解
2024年7月23日23:41 比例式っぽいやつ ゲスト
正解
2024年7月23日23:41 比例式っぽいやつ ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

有理化問題

noname 自動ジャッジ 難易度:
9月前

14

解答が間違っていたため修正いたしました。ご迷惑をおかけしてしまい申し訳ございません。

$\frac{1}{\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}$
を有理化し、その分母を答えよ。

解答形式

既約分数にしてその分母を整数値でお答えください。

確率

Ultimate 自動ジャッジ 難易度:
6月前

8

問題文

5進数で表された[2024]を2進数で表せ。

解答形式

数字のみでOK

簡単な幾何

Lamenta 自動ジャッジ 難易度:
4月前

14

問題文

$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。

解答形式

半角数字で解答してください。

今日の因数分解 第60回

Lamenta 自動ジャッジ 難易度:
4月前

19

問題文

$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。

解答形式

半角数字で解答してください。

9月前

6

問題文

下図で、 四角形ABCDは平行四辺形です。四角形ABCDの面積が50㎠、五角形GHIJKの面積が5㎠のとき、十角形DGEHFIBJCK(青い部分)の面積は何㎠ですか。ただし、図は正確とは限りません。

解答形式

半角数字で入力してください。
例)10

方程式の解の個数

tsukemono 自動ジャッジ 難易度:
8月前

12

問題文

$a$を定数とする。
このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。

解答形式

a=𓏸𓏸というふうに解答してください。
また、全て半角で解答してください。
答えのみ入力してください。

対角線の本数

noname 自動ジャッジ 難易度:
7月前

26

問題文

正$n$角形の対角線の本数が素数になるような自然数$n$を全て求めてください。

解答形式

$n$としてあり得る数を半角で小さい順に1列に1つずつ縦に解答してください。
例:2,3と答えたい時
2
3
と解答してください。

除夜コン2023予選A2

shoko_math 自動ジャッジ 難易度:
10月前

14

問題文

実数 $x,y$ が $\bigg\{\begin{aligned}
20x+12y=20 \\
23x+31y=24
\end{aligned}$ の $2$ 式を満たすとき,$2023x+1231y$ の値を求めて下さい.

解答形式

半角数字で解答してください.

4月前

13

問題文

実数a,b,c,d,e,fが次の不等式を満たしている。
$$
a^2+b^2+c^2≦1
$$$$
b^2+c^2+d^2≦1
$$$$
c^2+d^2+e^2≦1
$$$$
d^2+e^2+f^2≦1
$$このとき$$a+b+c+d+e+f$$の最大値を求めよ。

解答形式

a+b+c+d+e+fが最大となる時の(a+b+c+d+e+f)^2の値を入力してください。

積100万へのみちしるべ

kusu394 自動ジャッジ 難易度:
6月前

11

問題文

$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように
並び替えただけの組は同一のものとみなします.

200G

Nyarutann 自動ジャッジ 難易度:
4月前

9

問題文

五角形 $ABCDE$ は $\angle{A}=90°$ で,四角形 $BCDE$ は $1$ 辺の長さが $8$ の正方形になっています.$AC$ と $BD$ の交点を $P$ とし,$AP=PQ$ となる点 $Q$ を辺 $DE$ 上に取りました.$\angle{ACQ}=45°$ であるとき,$PQ$ の長さの $2$ 乗を求めてください。

解答形式

非負整数を半角で入力してください。

幾何作問練習2

Lamenta 自動ジャッジ 難易度:
4月前

16

問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。