自作問題No.2

Tehom 自動ジャッジ 難易度: 数学 > 競技数学
2024年8月7日21:02 正解数: 6 / 解答数: 14 (正答率: 42.9%) ギブアップ数: 2
C分野

全 14 件

回答日時 問題 解答者 結果
2024年8月14日11:22 自作問題No.2 nmoon
正解
2024年8月12日15:51 自作問題No.2 Weskdohn
正解
2024年8月11日1:48 自作問題No.2 natsuneko
正解
2024年8月8日22:04 自作問題No.2 aaabbb
不正解
2024年8月8日21:57 自作問題No.2 aaabbb
不正解
2024年8月8日21:57 自作問題No.2 aaabbb
不正解
2024年8月8日21:52 自作問題No.2 aaabbb
不正解
2024年8月8日21:39 自作問題No.2 aaabbb
不正解
2024年8月8日21:33 自作問題No.2 aaabbb
不正解
2024年8月8日17:24 自作問題No.2 ゲスト
不正解
2024年8月8日17:20 自作問題No.2 ゲスト
不正解
2024年8月7日22:58 自作問題No.2 bzuL
正解
2024年8月7日22:38 自作問題No.2 MARTH
正解
2024年8月7日21:20 自作問題No.2 imabc
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

円形じゃんけん

J_Koizumi_144 自動ジャッジ 難易度:
10月前

14

問題文

$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?

解答形式

半角数字で入力してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
6月前

16

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
8月前

22

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.

SMC100-94

MARTH 自動ジャッジ 難易度:
12月前

8

$100\times 100$ のマス目があります. 上から $i$ 行目, 左から $j$ 列目のマスを $100(i-1)+j$ と呼ぶことにします. SMC 君は一般的な $6$ 面サイコロを $10000$ 回振り, $i$ 回目に振って出た目をマス $i$ に書き込みます. このとき, 以下の条件を満たす確率を $p$ とするとき, $6^{10000}p$ は整数になるので, 素数 $3299$ で割った余りを求めてください.

  • 任意の行について, その行のマスに書かれた整数の総和は偶数.
  • 任意の列について, その列のマスに書かれた整数の総和は $3$ の倍数.
10月前

6

問題文

鋭角三角形ABCについて,外心をO,重心をG,垂心をH,内心をIとします.
$$AO=\dfrac{325}{24}, AH=\dfrac{125}{12}, AG=\sqrt{145}$$
であるとき,$AI$の2乗を答えてください.

解答形式

答えは非負整数なので非負整数値を入力してください.

下位5桁

Ultimate 自動ジャッジ 難易度:
6月前

7

問題文

101^100の下位5桁(万の位まで)を求めよ。

解答形式

半角でお願いします。

整数

kiriK 自動ジャッジ 難易度:
29日前

22

$4桁の数Xについて、Xの各位の数字を1桁ずつ足し合わせた和をk(X)とおく。$
$4桁の数A,Bにおいて$$$
\begin{eqnarray}
\frac{k(A)}{k(B)}=\frac{A}{B}=n
\end{eqnarray}
$$$ (nは2以上の整数)$
$のとき、Aの取りうる値は何個あるか。$
半角数字のみで答えよ

タイリング

J_Koizumi_144 自動ジャッジ 難易度:
10月前

23

問題文

$8\times 8$のマス目に$1\times 2$のタイルと$1\times 1$のタイルを隙間なく並べる方法のうち,以下の条件を満たすものを考えます.

  • どの行にも$1\times 1$のタイルがちょうど$1$つ含まれる.

このような並べ方のうち,横向きの$1\times 2$のタイルの個数が最大となるものは何通りありますか?
ただし,回転や裏返しによって一致する並べ方は区別します.また,$1\times 2$のタイルが横向きであるとは,長辺が行に平行であることを指します.

解答形式

半角数字で入力してください.

整数問題

rt3010 採点者ジャッジ 難易度:
8月前

3

問題文

$x,y,z$は整数とする。また、$p$は素数とする。
$x^{4}+y^{4}+z^{4}-2x^{2}y^{2}-2y^{2}z^{2}-2z^{2}x^{2}-8x^{2}yz-8xy^{2}z-8xyz^{2}=p$となるとき、$p$の最小値を求めよ。また、$p$が最小値をとるとき、$x,y,z$の組を全て求めよ。

解答形式

$p$の最小値を$p$=~の形式で1行目に、$x,y,z$の組を$(x,y,z)$=~ の形式で2行目以降にすべて書いてください。ジャッジは自分でするのであまり気にしないで自由に回答してください。

三角形の面積の和

Fuji495616 自動ジャッジ 難易度:
7月前

4

問題文

$∠$A=69°、$∠ $B=66°、$∠ $C=45°である三角形ABCがあります。辺AC上にAB=DBとなる点Dをとり、辺BC上にAB=AEとなる点Eをとりました。DBとEAの交点をFとします。三角形AFBの周りの長さが12cmの時、三角形ABCの面積の2倍と三角形ABFの面積の和は何cm$^2$ですか。

解答形式

半角数字で入力してください。
例)10

幾何問題11/22

326_math 自動ジャッジ 難易度:
12月前

5

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

No.02 集合と要素の個数

Prime-Quest 自動ジャッジ 難易度:
10月前

3

問題

$(1)$ 集合 $S_n=\{nx\mid x^3\leqq 2x^2+5x-6\}$ に対し,整数 $k\notin\overline{S_1\cap S_2}\cup S_3$ は何個あるか.
$(2)$ $3$ 桁の素数は $200$ 個未満か.

解答形式

命題は真なら $1$,偽なら $0$ として,$(1),(2)$ の和を半角数字で入力してください.