対数の性質

skimer 自動ジャッジ 難易度: 数学 > 高校数学
2024年9月21日17:38 正解数: 10 / 解答数: 10 (正答率: 100%) ギブアップ数: 0
対数 高校数学 数学 指数対数

全 10 件

回答日時 問題 解答者 結果
2024年11月14日22:10 対数の性質 kohaku
正解
2024年9月23日22:12 対数の性質 asmin
正解
2024年9月23日1:57 対数の性質 Azarashiii
正解
2024年9月22日22:51 対数の性質 MrKOTAKE
正解
2024年9月22日15:21 対数の性質 nanohana
正解
2024年9月22日15:20 対数の性質 ゲスト
正解
2024年9月22日8:18 対数の性質 Weskdohn
正解
2024年9月22日0:10 対数の性質 nanohana
正解
2024年9月22日0:09 対数の性質 ゲスト
正解
2024年9月21日20:03 対数の性質 katsuo_temple
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

Q3.素数

34tar0 自動ジャッジ 難易度:
3月前

10

問題文

素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。

解答形式

算用数字で解答してください。

幾何作問練習2

Lamenta 自動ジャッジ 難易度:
6月前

16

問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。

自作問題G1

imabc 自動ジャッジ 難易度:
9月前

7

問題文

https://mathlog.info/articles/Lf8QaKPklfv156yuq309 問題13)
 三角形$ABC$において外接円,内接円,角$A$内の傍接円の半径をそれぞれ$R,r,r_A$とすると

$$R=14,r=6,r_A=19$$

が成り立ちました.このとき$BC$の長さの二乗を求めてください.

解答形式

答えを入力してください.

中線と垂線

kusu394 自動ジャッジ 難易度:
4月前

4

問題文

$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.

$$ AB = 12, \ \ BC= 20 $$

のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

内接円の半径

nepia_nepinepi 自動ジャッジ 難易度:
1日前

3

問題文

半径$3$の円に内接する六角形$ABCDEF$ は以下の2つの条件をみたします:

四角形$ABDE, BCEF,CDFA$は長方形
周長が$15$

このとき,三角形$ACE$の内接円の$\textbf{半径}$を求めてください。

解答形式

答は非負整数$a,b$を用いて$\frac{a}{b}$と表されるので$a+b$の値を半角数字で答えてください。

文化祭算数問題 3

sta_kun 自動ジャッジ 難易度:
3月前

13

問題文

四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?

解答形式

半角数字で解答してください.

図形

ammonitenh3 自動ジャッジ 難易度:
2月前

5

問題文

三角形ABCとその辺AB上にある点Dと辺CA上にある点Eが次の二つの条件を満たしている.(ただし、点D,Eは点Aとは一致しない)
 (Ⅰ)AB=13,BC=14,CA=15
 (Ⅱ)4点B,C,E,Dは共円
 このとき、「点Aを通りDEに垂直な直線」と、線分BCの交点をFとする.
 BFの長さを求めよ.

解答形式

例)この答えは、互いに素な自然数$a$,$b$を用いて$\frac{a}{b}$と書けるので、$a$+$b$の値を答えてください.

幾何作問練習3改

Lamenta 自動ジャッジ 難易度:
4月前

4

問題文

$AB>AC$なる鋭角三角形$ABC$において, $C$から$AB $に下ろした垂線の足を$D$, $BC$の中点を$M$, $AM$と$CD$の交点を$E$とし, 円$BDM$と$CD$の交点のうち$D$ではない方を$F$, 円$CDM$と$AM$の交点のうち$M$ではない方を$G$とします. $CD=32$, $DM=20$, $EF=5$であるとき, $FG$の長さの$2$乗を解答してください.

解答形式

半角数字で入力してください.

正方形と円の接線

kusu394 自動ジャッジ 難易度:
7月前

4

問題文

正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると,
$$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
答えひらがなな訳ありませんでした、失礼しました

方程式の解の個数

tsukemono 自動ジャッジ 難易度:
10月前

12

問題文

$a$を定数とする。
このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。

解答形式

a=𓏸𓏸というふうに解答してください。
また、全て半角で解答してください。
答えのみ入力してください。

A

Furina 自動ジャッジ 難易度:
2月前

30

問題文

垂心を $H$ とする鋭角三角形 $ABC$ において,直線 $AH$ と辺 $BC$ の交点を $D$ とすると,
$$BH=2,CH=7,DH=1$$
が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.

解答形式

半角数字で入力してください。

文化祭算数問題 2

sta_kun 自動ジャッジ 難易度:
3月前

11

問題文

四角形 $ABCD$ について,角 $DBC=20°$,角 $BDC=90°$,角 $ADB=40°$,$AD:BC=1:2$ が成り立ちました.このとき角 $ABD$ は何度ですか?

解答形式

半角数字で解答して下さい.