Q3.素数

34tar0 自動ジャッジ 難易度: 数学 > 競技数学
2024年9月22日14:41 正解数: 12 / 解答数: 14 (正答率: 85.7%) ギブアップ数: 0
整数 素数 N

全 14 件

回答日時 問題 解答者 結果
2025年4月1日23:27 Q3.素数 purin_neko1729
正解
2025年3月2日18:37 Q3.素数 ゲスト
不正解
2025年2月23日1:16 Q3.素数 natsuneko
正解
2025年2月19日21:08 Q3.素数 Nyarutann
正解
2025年1月8日14:45 Q3.素数 Furina
正解
2024年9月27日16:12 Q3.素数 Weskdohn
正解
2024年9月26日14:52 Q3.素数 Tehom
正解
2024年9月24日22:36 Q3.素数 nmoon
正解
2024年9月24日13:38 Q3.素数 ゲスト
不正解
2024年9月23日22:11 Q3.素数 asmin
正解
2024年9月22日21:03 Q3.素数 nanohana
正解
2024年9月22日21:03 Q3.素数 nanohana
正解
2024年9月22日15:24 Q3.素数 nanohana
正解
2024年9月22日15:20 Q3.素数 ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

幾何問題24/1/8

miq_39 自動ジャッジ 難易度:
15月前

9

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

整数

kiriK 自動ジャッジ 難易度:
6月前

22

$自然数Xについて、Xの各位の数字を足し合わせた値をk(X)とおく。$
$4桁の自然数A,Bにおいて$$$
\begin{eqnarray}
\frac{k(A)}{k(B)}=\frac{A}{B}=n
\end{eqnarray}
$$$ (nは2以上の整数)$
$のとき、Aの取りうる値は何個あるか。$
半角数字のみで答えよ

初投稿

Upasha 自動ジャッジ 難易度:
57日前

12

問題文

命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ

解答形式

真ならば真、偽ならば偽と入力

整数問題(2)

tsukemono 自動ジャッジ 難易度:
8月前

36

問題文

$\frac{n}{144}$が$1$より小さい既約分数になるような自然数$n$の個数を求めよ。

解答形式

半角算用数字で答えてください。

整数の剰余

mahiro 自動ジャッジ 難易度:
21日前

13

問題文

以下によって定義される整数 $N$ を素数 $13907$ で割った余りを求めてください.$$N=\prod_{k=1}^{13906} (k^2+2025)$$

解答形式

13906以下の非負整数で解答してください

自作問題G1

imabc 自動ジャッジ 難易度:
12月前

7

問題文

https://mathlog.info/articles/Lf8QaKPklfv156yuq309 問題13)
 三角形$ABC$において外接円,内接円,角$A$内の傍接円の半径をそれぞれ$R,r,r_A$とすると

$$R=14,r=6,r_A=19$$

が成り立ちました.このとき$BC$の長さの二乗を求めてください.

解答形式

答えを入力してください.

整数

kiriK 自動ジャッジ 難易度:
6月前

14

$
f(x)= 2^{2^{x}x}-1
$
とする。このとき、
$
f(1)+f(2)+f(3)+・・・+f(2024)=A
$
とすると、Aの一の位の数字は何になるか。

P5

Lamenta 自動ジャッジ 難易度:
5月前

9

問題文

外接円の直径が$5$,$AB:AD=5:7$の内接四角形$ABCD$において,$\triangle ABC$の内心,$B$傍心をそれぞれ$I_1$,$I_B$とし,$\triangle ADC$の内心,$D$傍心をそれぞれ$I_2$,$I_D$とすると,$I_1$,$I_2$,$I_B$,$I_D$は同一円周上にあり,$I_1I_B\cdot I_2I_D=40$を満たした.$AC$の中点を$M$としたとき,$BM+DM$を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表されるので,$a+b$を半角数字で解答してください.

KOTAKE杯001(N)

MrKOTAKE 自動ジャッジ 難易度:
8月前

26

問題文

三角形$ABC$の外心を$O$とする. $AO$を直径とする円と$AB$,$AC$の交点のうち$A$でないものをそれぞれ$D,E$とすると$DE=3,CD=5$であり四角形$BCED$は内接円を持ちました.
このとき三角形$ABC$の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

整数

kiriK 自動ジャッジ 難易度:
6月前

20

$
a!=b^{2}+2となる自然数a,整数bについて、
$
$
k(a,b)=a+bとおく。
$
$
k(a,b) の値として考えられるものは何個あるか。
$

連続する整数の積

noname 自動ジャッジ 難易度:
2月前

7

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
13月前

22

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.