${}$ 西暦2025年問題第3弾です。九九表81個の数の総和を求めると2025であることが、いろいろなところで語られています。それを元にアレンジしてみました。工夫をして計算してほしいところですが、根性でもどうぞ!
${}$ 解答は求める和をそのまま入力してください。 (例)103 → $\color{blue}{103}$
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
${}$ 西暦2026年問題第5弾です。僕の西暦問題では珍しく多項式がテーマです。数の大きさに怯むかもしれませんが、上手く処理すれば単純な計算で求まります。ぜひ挑戦してください。
${}$ 解答は$x$の値をそのまま半角で入力してください。「$x=$」の記載は不要です。 (例)$x=$105 → $\color{blue}{105}$
${}$ 西暦2026年問題第4弾です。見た目こそ覆面算風味の整数問題ですが、はたして……? 桁数の多い計算が待っていますので、適宜電卓をお使いください。
${}$ 解答は1行目に$x$の値を、2行目に$d$の値を、それぞれ半角で入力してください。「$x=$」「$d=$」といった記載は不要です。 (例)$x=$104、$d=$4 → 《1行目》$\color{blue}{104}$、《2行目》$\color{blue}{4}$
${}$ 西暦2026年問題第3弾は規則性の問題でお送りします。あることに気づけば機械的な計算で答えが求まります。規則性の妙をお楽しみください。
${}$ 解答は$n$の値を半角でそのまま入力してください。「$n=$」の記載は不要です。 (例)$n=103$ → $\color{blue}{103}$ なお、この条件を満たす$n$が存在しない場合には、$\color{blue}{-1}$と入力してください。
以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。 $$ 4a²+b²+c²=d² $$
半角数字で解答してください。
$37^{2024}$ の十の位と一の位の数をもとめてください.
$37^{2024}$ の十の位と一の位の数を空白で区切って1行に入力してください. 例えば $37^{2024}$ の十の位が $0$ で一の位が $2$ の場合は 0 2 のように入力してください。
0 2
円Oが存在して、円O上に点A,B,C,Dをこの順に配置する。角ABD、角DCAそれぞれの二等分線の交点をE、角BAC、角CDBそれぞれの二等分線の交点をF、BDとACの交点をG、△ABG、△DCGそれぞれの内心をI,I’とする。 $$AB=\frac{19}{2},EF=11,△ABI=\frac{19}{2} $$ の時、四角形EIFI’の面積を求めよ。
求める値は互いに素な正整数a,bでa/bと表せるので、a+bを解答してください。
$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする $f(x)$ が最小値を取るときの $x$ の値を求めよ
解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください
$$ p^{q+r} +q^{p+r} +r^{p+q}が素数となるような10以下の素数の組(p,q,r)の個数を求めよ。 $$
半角数字で解答してください。覚悟して解いてください。
設問4
数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式 $$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$ を満たす。一般項 $a_n$ を求めよ。
例)ひらがなで入力してください。
設問1
数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。
半角1スペースで答えのみ
正の実数 $a,b,c,d$ が, $$ 2(a^2+b^2+c^2+d^2)=(a+b+c+d)^2+8\sqrt{abcd} $$ を満たす時,以下の値の最小値を求めて下さい.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください. $$ \dfrac{6a+8b+9c}{d} $$
整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.
半角数字で入力してください.