アクセスがしづらい状況について (2025年1月23日14:22)
現在、ポロロッカにアクセスがしづらい状況が発生しております。 サーバー強化など応急処置は完了しておりますが、本格的な調査は2月ごろとなる見込みです。 ご迷惑をおかけし、大変申し訳ございません。

計算問題

18jn-055@izo-ed.jp 自動ジャッジ 難易度: 数学 > 算数
2025年1月31日9:38 正解数: 8 / 解答数: 8 (正答率: 100%) ギブアップ数: 0

全 8 件

回答日時 問題 解答者 結果
2025年2月20日20:55 計算問題 kohaku
正解
2025年2月8日22:31 計算問題 ゲスト
正解
2025年2月2日19:33 計算問題 kohaku
正解
2025年2月2日16:17 計算問題 Calculator
正解
2025年2月1日10:28 計算問題 MrKOTAKE
正解
2025年2月1日10:07 計算問題 koukiyayo
正解
2025年1月31日21:24 計算問題 Weskdohn
正解
2025年1月31日14:42 計算問題 Namesh
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています


1 次の式を計算せよ。

(1) −5−(−3)

5月前

11

問題文

$\log_227$の整数部分を答えよ

計算

kokoyu 採点者ジャッジ 難易度:
8月前

4

問題文

連続する5つの整数の和は必ず5の倍数になる。この理由を、nを使った式で説明しなさい

解答形式

数字は半角とする

50日前

6

${}$ 西暦2025年問題第3弾です。九九表81個の数の総和を求めると2025であることが、いろいろなところで語られています。それを元にアレンジしてみました。工夫をして計算してほしいところですが、根性でもどうぞ!

解答形式

${}$ 解答は求める和をそのまま入力してください。
(例)103 → $\color{blue}{103}$

図形

ammonitenh3 自動ジャッジ 難易度:
3月前

6

問題文

三角形ABCとその辺AB上にある点Dと辺CA上にある点Eが次の二つの条件を満たしている.(ただし、点D,Eは点Aとは一致しない)
 (Ⅰ)AB=13,BC=14,CA=15
 (Ⅱ)4点B,C,E,Dは共円
 このとき、「点Aを通りDEに垂直な直線」と、線分BCの交点をFとする.
 BFの長さを求めよ.

解答形式

例)この答えは、互いに素な自然数$a$,$b$を用いて$\frac{a}{b}$と書けるので、$a$+$b$の値を答えてください.

連理湯方程式の利用2

kokoyu 自動ジャッジ 難易度:
8月前

12

問題文

34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい

解答形式

半角で、3人の班=Xで答えるものとする

2025問題

Yuu_0909 自動ジャッジ 難易度:
4月前

16

問題文

$2025^{2025}$の正の約数のうち、7で割ると1余るものの個数を求めよ。

解答形式

答えは整数なので、半角数字で答えてください。

過去垢の問題(整数➀)

katsuo_temple 自動ジャッジ 難易度:
3月前

7

問題文

以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。
$$
4a²+b²+c²=d²
$$

解答形式

半角数字で解答してください。

2025記念問題

kiwiazarashi 自動ジャッジ 難易度:
53日前

20

問題文

素因数分解したときの素因数の合計が22になるものを「キウイナンバー」とします。(例えば2025は素因数分解すると3×3×3×3×5×5になり、これを合計すると22になるので2025はキウイナンバーです。)
最大のキウイナンバーを求めてください。

解答形式

答えの数字をそのまま入力すればOKです。

幾何作問練習2

Lamenta 自動ジャッジ 難易度:
7月前

16

問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。

そらさんの新体力テスト

sola 自動ジャッジ 難易度:
10月前

7

問題文

そらさんとあかつきさんは地点Aから東にある地点Bに向かって進みます。

そらさんは2秒間東に毎秒4m進み、1秒間西に毎秒2m進むを繰り返します。

あかつきさんは毎秒Xm東に進みます。

そらさんとあかつきさんは同時に地点Aを出発し、20秒後に同時に地点Bに到着しました。

Xはいくつですか?

解答形式

Xは互いに素な自然数A,Bを用いてA/Bと表せるので、A+Bを回答してください。

確率

Ultimate 自動ジャッジ 難易度:
9月前

10

問題文

5進数で表された[2024]を2進数で表せ。

解答形式

数字のみでOK