二項係数の和と極限

nps 自動ジャッジ 難易度: 数学 > 高校数学
2025年2月23日23:25 正解数: 5 / 解答数: 9 (正答率: 55.6%) ギブアップ数: 1

全 9 件

回答日時 問題 解答者 結果
2025年4月15日1:36 二項係数の和と極限 AS
正解
2025年3月2日6:41 二項係数の和と極限 ゲスト
正解
2025年3月2日6:40 二項係数の和と極限 ゲスト
不正解
2025年3月2日6:37 二項係数の和と極限 ゲスト
不正解
2025年2月28日18:44 二項係数の和と極限 Weskdohn
正解
2025年2月28日18:43 二項係数の和と極限 ゲスト
不正解
2025年2月27日13:08 二項係数の和と極限 iwashi
正解
2025年2月26日9:07 二項係数の和と極限 ms
不正解
2025年2月25日11:19 二項係数の和と極限 tima_C
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

極大値

Ultimate 自動ジャッジ 難易度:
9月前

3

問題文

次の関数の極大値を求めよ。
y=|x^2-7x+10|+x

解答形式

半角数字でお願いします。

Two sequences (学コン2025-2-6)

Lim_Rim_ 自動ジャッジ 難易度:
23日前

3

問題文

$p=2^{10} - 3$とおき, 数列$a_n, b_n$を以下の式で定める.
\begin{aligned}
&a_0=0,\quad a_1 = 1,\quad a_{n+2} = 2a_{n+1} +2a_n & (n=0,1,\dots) \\
&b_0=0, \quad b_1 = 1,\quad b_{n+2} = 2b_{n+1} +(p+2)b_n & (n=0,1,\dots)
\end{aligned}

(1) $a_n,b_n$をそれぞれ$n$で表せ.
(2) $a_{1024}$を$p$で割った余りを求めよ. ただし, 整数$m$に対して$m^p\equiv m\pmod{p}$であることを用いてもよい.

解答形式

(2) の解答を入力してください((1)は解答参照)

備考

本問は大学への数学2025年2月号6番に掲載された自作問題です.

11月前

4

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33


問題

$n$を $0$ でない実数とします。以下の定積分を求めてください。

解答形式

答えだけでもいいですが、方針があると嬉しいです。

ちょっと長い方程式

noname 自動ジャッジ 難易度:
12月前

5

問題文

$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$

少し問題を変更いたしました。ご迷惑をおかけしてしまい申し訳ございません。

解答形式

$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。

xsinxを含む定積分

zyogamaya 自動ジャッジ 難易度:
4年前

4

問題文

$I=\displaystyle \int_{0}^{\pi}\frac{x\sin x}{\sin^{2\cdot2}x -2\sin^2x+2} dx$を求めよ。

解答形式

答えは、
$\displaystyle I=\frac{\pi}{a\sqrt{b}}(c\log(\sqrt{d}+e)+\pi)$の形になります。($a,b,c,d,e$は1桁の自然数)
「abcde」(5桁の自然数)を入力してください。なお、センター、共通テスト形式で数字を埋めてください。

400A

MARTH 自動ジャッジ 難易度:
13月前

8

関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.

  • $f_{0}(x)=e^{e^x}$
  • $f_{n}(x)=\dfrac{d}{dx}f_{n-1}(x)\quad (n=1,2,\dots)$.

また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.

  • $\displaystyle A_n=\lim_{x\rightarrow-\infty}e^{-x}f_{n}(x)$ .
  • $\displaystyle B_n=\lim_{x\rightarrow-\infty}e^{-x}\big(e^{-x}f_{n}(x)-A_n)$.

$B_{24}$ の値を求めてください.

方程式の実数解

RentoOre 自動ジャッジ 難易度:
13月前

7

問題文

$x$ についての方程式 $xe^{2\sqrt{x}}=9(\log{3})^2$ の実数解を求めよ。

解答形式

解をすべて答えてください。値の小さい順に1行目から入力してください。
なお,解答にあたって,特殊な数式は次のように入力してください。

対数:$\log_n{m}$ = \log_{n}{m}, $\log{m}$ = \log{m}
指数($\sqrt{m} = m^{\frac{1}{2}}$もすべて指数として入力してください):$n^{m}$ = n^{m}
分数:$\frac{a}{b}$ = \frac{a}{b}

4月前

12

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(1)$ $P(2)$の値を求めよ。

(2)~(4)は,自作場合の数・確率1-2につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

第1回琥珀杯 大問1

Kohaku 自動ジャッジ 難易度:
2月前

13

問題文

正整数$n$の値を無作為に定めるとき、$\sqrt{n}^\sqrt{n}$が有理数となる確率を求めよ。

解答形式

0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。

e進数!?

amberGames-777 自動ジャッジ 難易度:
12月前

10

問題文

100をe進数で表記すると何桁になるか。(整数部分のみ)

解答形式

半角数字+「桁」という文字(例:1桁)