OMC没問7

natsuneko 自動ジャッジ 難易度: 数学 > 高校数学
2025年3月16日23:53 正解数: 4 / 解答数: 7 (正答率: 57.1%) ギブアップ数: 1
初等幾何 競技数学

全 7 件

回答日時 問題 解答者 結果
2025年10月31日22:39 OMC没問7 poinsettia
正解
2025年8月16日19:28 OMC没問7 ゲスト
正解
2025年6月18日19:04 OMC没問7 Calculator
不正解
2025年6月18日18:56 OMC没問7 ゲスト
不正解
2025年6月18日18:53 OMC没問7 ゲスト
不正解
2025年3月21日16:16 OMC没問7 tima_C
正解
2025年3月17日0:08 OMC没問7 wasab1
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

接点間距離から半径

AS 自動ジャッジ 難易度:
6月前

3

互いに外接する3つの円 $J,K,L$ があり,$K$ と $L$ の接点を $\mathrm A$,$L$ と $K$ の接点を $\mathrm B$,$J$ と $K$ の接点を $\mathrm C$ とする.$\triangle\mathrm{ABC}$ について,頂点 $\mathrm A,\mathrm B,\mathrm C$ の対辺の長さをそれぞれ $a,b,c$ とするとき,円 $J,K,L$ の半径を求めよ.

ただし,解答に際しては $a=17,\ b=13,\ c=14$ の場合の $J$ の半径の値を答えよ.
整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.

自作問題No.3

Tehom 自動ジャッジ 難易度:
8月前

14

問題文

縦に $2$ マス,横に $20$ マス並んだ $2 \times 20$ のマス目に対して,以下の $2$ つの条件をともに満たすように各マスに $0$ 以上 $25$ 以下の整数を書き込む方法は $S$ 通りあるので,$S$ を割り切る素数すべての積を求めてください.ただし,$a_{i,j}$ で上から $i$ 行目,左から $j$ 列目に書き込まれた数字を表します.
・$1 \le j \le 20$ に対して,$a_{2,j} \le a_{1,j}$ .
・$1 \le i \le 2,1 \le j \le 19$ に対して,$a_{i,j+1} \le a_{i,j}$ .

解答形式

半角数字で解答してください.

キカ⭐️キカ⭐️

mim 採点者ジャッジ 難易度:
39日前

3

問題文

ある鋭角三角形ABCにおいてAから対辺への
垂線の足をD,ADの中点をM,△ABCの内心を
IとするとAC//MIである。
BD=1,CD=6のとき△ABCの面積を求めよ。

解答形式

ある程度シンプルな形で答えよ。

OMC不採用問題1

Tehom 自動ジャッジ 難易度:
11月前

4

問題文

$\displaystyle\frac{728^{3^m}+730^{3^n}}{3^{m+n}}$ が整数となるような正整数 $(m,n)$ の組すべてについて, $mn$ の総和を求めてください.

解答形式

半角数字で解答してください.

400A

MARTH 自動ジャッジ 難易度:
33日前

6

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{mn^{n-m-1}}{(n-m)!}
$$

immovable

yuuki_sakimori 自動ジャッジ 難易度:
5年前

10

問題文

自然数$a,b,c,d$は
$$
a\neq b
$$ $$
(a+b)(a-b)+(ad-bc)=0
$$ $$
bc-a^2=1
$$
を満たしています.このとき
$$
\frac{c-d}{a-b}
$$
の取り得る値を全て求めてください.

解答形式

半角数字で解答してください.複数ある場合は小さい順に一行ずつ入力してください.
Ex:答えが「1」と「-$\frac{3}{89}$」と「100」のとき
-3/89
1
100
と解答してください.

Final 5

seven_sevens 採点者ジャッジ 難易度:
10月前

4

$a$は$x$と独立であるとする。
$x$の方程式
$$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$
の$0\leqq x\leqq \frac\pi2$における解を$y$とする。
この時、以下の値を求めよ。
$$\int_0^1\frac1{\sin^2y}da$$

幾何α

katsuo_temple 自動ジャッジ 難易度:
11月前

30

問題文

$AB≠AC$を満たす鋭角三角形$ABC$の内心を$I$とする。三角形$ABC$の内接円$\omega$は辺$BC,CA,AB$とそれぞれ点$D,E,F$で接している。$D$を通り$EF$に垂直な直線と$\omega$の交点のうち,$D$でない方を$G$とし,直線$AG$と$\omega$の交点のうち,$G$でない方を$H$とする。さらに,三角形$BHF$と三角形$CHE$の外接円の交点のうち,$H$でない方を$J$とし,直線$HJ$と直線$DI$の交点を$X$とすると以下が成立した。
$$
DX=\sqrt{1122} AH||DX DG=22
$$
このとき,$AX^{2}$は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので,$a+b$の値を解答して下さい。

解答形式

半角数字で解答して下さい。

Two sequences (学コン2025-2-6)

Lim_Rim_ 自動ジャッジ 難易度:
7月前

4

問題文

$p=2^{10} - 3$とおき, 数列$a_n, b_n$を以下の式で定める.
\begin{aligned}
&a_0=0,\quad a_1 = 1,\quad a_{n+2} = 2a_{n+1} +2a_n & (n=0,1,\dots) \\
&b_0=0, \quad b_1 = 1,\quad b_{n+2} = 2b_{n+1} +(p+2)b_n & (n=0,1,\dots)
\end{aligned}

(1) $a_n,b_n$をそれぞれ$n$で表せ.
(2) $a_{1024}$を$p$で割った余りを求めよ. ただし, 整数$m$に対して$m^p\equiv m\pmod{p}$であることを用いてもよい.

解答形式

(2) の解答を入力してください((1)は解答参照)

備考

本問は大学への数学2025年2月号6番に掲載された自作問題です.

幾何

sdzzz 自動ジャッジ 難易度:
14月前

8

問題文

$AB\lt AC$ なる鋭角三角形 $ABC$ があり,$BC$ の中点を $M$ とします.また,直線 $AB$ に $B$ で接し $M$ を通る円を $\Gamma_1$ ,直線 $AC$ に $C$ で接し $M$ を通る円を $\Gamma_2$ とし,直線 $AM$ と $\Gamma_1,\Gamma_2$ との交点のうち $M$ でない方をそれぞれ $D,E$ ,$DE$ の中点を $F$ ,$\Gamma_1$ と $\Gamma_2$ の交点を $G$ とした時,以下が成り立ちました.
$$
AM:MG=3:1,\quad AC=24,\quad CF=10
$$
この時,$BC^2$ の値を求めてください.

解答形式

例)半角数字で入力してください。


${}$ 西暦2025年問題第5弾です。今回は覆面算風味の整数問題です。けれども、独特な解き心地があります。単一解であるのを前提にして構いませんので、じっくりと味わってください。

解答形式

${}$ 解答は指定の積をそのまま入力してください。
(例)105 → $\color{blue}{105}$

まわりまわる面積比較

kusu394 自動ジャッジ 難易度:
18月前

4

問題文

四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします.
$$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
若干日本語がおかしかったため編集しました. 解答には影響はないと思われます.
一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.