Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月31日12:57 正解数: 3 / 解答数: 5 (正答率: 60%) ギブアップ数: 1

全 5 件

回答日時 問題 解答者 結果
2025年5月14日17:31 Reverse digits (学コン2024-12-3) Weskdohn
正解
2025年4月15日17:26 Reverse digits (学コン2024-12-3) tima_C
不正解
2025年4月1日22:24 Reverse digits (学コン2024-12-3) Nyarutann
正解
2025年3月31日22:17 Reverse digits (学コン2024-12-3) natsuneko
正解
2025年3月31日15:16 Reverse digits (学コン2024-12-3) Nyarutann
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

Triangle T

Lim_Rim_ 自動ジャッジ 難易度:
46日前

5

問題文

三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.

解答形式

$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は解説を参照してください。)

備考

2018年3月の大学への数学「読者と作るページ」に掲載された問題です。

ハロウィンの体育

GaLLium 自動ジャッジ 難易度:
46日前

17

問題文

正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき,
$$\sum_{k=1}^{12000} f(k)$$
の値を求めてください.

解答形式

半角英数字で回答してください.

5月前

12

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(1)$ $P(2)$の値を求めよ。

(2)~(4)は,自作場合の数・確率1-2につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

連続する整数の積

noname 自動ジャッジ 難易度:
2月前

8

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。


数直線上の点 $\mathrm P$ は初め原点にある.サイコロを振り $1, 2$ が出たら正の向きに $2$ 進み,$3, 4, 5, 6$ が出たら負の向きに
$1$ 進むという操作を繰り返す.
$6$ 回の操作をおこなったとき,点 $\mathrm P$ が常に $x\geqq0$ の範囲にある確率を求めよ.
答えは互いに素な自然数 $a,b$ を用いて $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$ を,$2$ 行目に $b$ を答えよ.

極限

sulippa 自動ジャッジ 難易度:
8日前

4

問題文

n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。

量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。

次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$

ただし、オイラー・マスケロー二定数を $γ$ とする。

解答形式

半角で

12月前

6

問題文

下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに,
$$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\
BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください.
ただし, $E$ は $\triangle ABC$ の内側にあります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
15月前

3

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.

OMC没問1

Kta 自動ジャッジ 難易度:
2月前

2

問題文

$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.

解答形式

半角数字で入力してください。

自作問題1

iwashi 自動ジャッジ 難易度:
14月前

2

問題文

$n$を自然数とする。$\displaystyle \sum_{k=1}^{n} n^k$を$8$で割った余りを$a_{n}$、 $\displaystyle S_{n}=\sum_{k=1}^{n}a_{k}$とする。すべての$n$に対して$a_{n+l}=a_{n}$が成り立つような自然数$l$の最小値と$S_{m+2025}=2S_{m}$が成り立つような自然数$m$の最大値を求めよ。

解答形式

1行目に$l$を,2行目に$m$を半角英数字で解答してください。例えば$l=123,m=456$とする場合

123
456

としてください。

原始ピタゴラス数

sulippa 自動ジャッジ 難易度:
3日前

2

問題文

互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。
$L^2=kS$ ($k$ は正の整数) を満たすとき、
全てのkの値を求めよ。

解答形式

半角1スペースおきに小さい順に並べてください