次の方程式を解いて、$x$の値をすべて求めてください。 $$x^5+2x^4+3x^3+3x^2+2x+1=0$$
$a,b,c,d,e$のように解答してください。($π$はpiで$i$(虚数単位)はiで分数は$\frac{1}{2}$の場合は1/2のように解答してください。)
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$a=2+\sqrt3$とする. このとき $$a^{2025}+a^{2023}+...+a^3+a$$の$1$の位を求めよ.
半角数字で解答してください
面積 $1$ の平行四辺形 $\mathrm{ABCD}$ に対し,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ の中点をそれぞれ $\mathrm K,\mathrm L,\mathrm M,\mathrm N$ とする.$8$ 直線 $\mathrm{AL},\mathrm{AM},\mathrm{BM},\mathrm{BN},\mathrm{CN},\mathrm{CK},\mathrm{DK},\mathrm{DL}$ によって囲まれてできる $8$ 角形の面積を求めよ.
ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら 5/13 のように記入して答えよ.
以下の漸化式で与えられる数列${a_n},{b_n}$を考える。ただし、$n$は非負整数であるとし、${a_n}$の初項は$a_0=1$とする。 $\displaystyle a_{n+1}=\sum_{k=0}^na_ka_{n-k} , \displaystyle b_{n+1}=\sum_{k=0}^n (k+1)a_ka_{n-k}$ (1)$b_n$を$a_n$で表わせ。 (2)$\displaystyle a_{n+1}=\frac{2(2n+1)}{n+2}a_n$を証明せよ。 (3)それぞれの数列の一般項$a_n,b_n$を求めよ。 (4)$\displaystyle \lim_{n \to \infty} \sqrt[n]{a_n}$を求めよ。ただし$\displaystyle\lim_{n \to \infty} \frac{\log n}{n}=\lim_{n \to \infty} \frac{\log(n+1)}{n}=0$を証明無しで用いても良い。
(4)の答えを半角数字またはTeXで入力してください。 (1)~(3)についてはお手持ちの紙に解答し、解説を確認ください。
三角形 $ABC$ について,辺 $BC,CA,AB$ の中点をそれぞれ $D,E,F$ とし,三角形 $ABC, DEF$ の垂心をそれぞれ $H_1, H_2$ とすると,以下が成立しました.$$H_1H_2=3\sqrt{3},\quad DH_2=1,\quad \angle{H_1H_2D}=150^{\circ}$$このとき,三角形 $ABC$ の面積の $2$ 乗の値を求めてください.
半角数字で入力してください。
n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。
量 $Q_n$ を次のように定義する。 $$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$ ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。
次の極限値を求めよ。 $$ \lim_{n \to \infty} \frac{Q_n}{n} $$
ただし、オイラー・マスケロー二定数を $γ$ とする。
半角で
三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,$AD,BC$の中点をそれぞれ$M,N$とする.$A N$と$EF$の交点を$P$とし,$DP$と$MN$の交点を$Q$,三角形$ABC$の外接円と$AQ$が再び交わる点を$R$としたとき,$$AN=10 AB=9 NR=3$$が成立した.このとき,$AC²$の値を解答してください.
半角で解答してください.
縦4列、横4行の16マスのうち、いくつかに色を塗ります。塗られるマスの数が列ごとに相異なり、行ごとに相異なる(但し、列と行で塗られる数が一致しても良い)、場合、塗り方は何通りありますか?
次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.
半角数字で入力してください.
以下の2次方程式 $$ x^{2}-2ax+b=0 ― (*) $$ について,自然数$n$を用いて以下の手順で係数$a,b$を定める。 $a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 $b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(2)$ $P(n)$を$n$の式で表せ。
(3)(4)は,自作場合の数・確率1-3につづく
2025/01/07追記 解説をアップデート,全員に対して公開に設定
$$ P(n)= \frac{A(Bn+C)(Dn+E)}{F(Gn^{2}+Hn+I)} $$
$A$~$I$に当てはまる整数を半角数字,空白区切りで回答
文字式の分数解答で自動ジャッジするのが大変だったので穴埋め式です。 わざとわかりづらくしてるので、1が入るところとかあります。
この問題は(2)です。が(1)を解かなくてもできます。解くと作者が喜びます。
${}$ 西暦2025年問題第6弾です。一見本格的な整数問題ですが、あいかわらず仕掛けを施しています。独特な時味の当問をどうぞお楽しみください。
${}$ 解答は求める項の値をそのまま入力してください。 (例)第10項=106 → $\color{blue}{106}$
1から100までの整数の中から異なる3つの整数を選び、$a<b<c$ とします。これらの3つの整数が等差数列をなすような選び方は何通りありますか?
半角英数字で解答してください。
【補助線主体の図形問題 #046】 バレンタイン直前なのを意識してこんな図形問題を用意してみました。イベント便乗の色物問題ですが、方針次第では暗算で処理できるのはいつも通りです。補助線と共に存分にお楽しみください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。