[B] Ising Othello

ofukufukufuku 自動ジャッジ 難易度: 数学 > 高校数学
2020年8月30日18:00 正解数: 3 / 解答数: 6 (正答率: 50%) ギブアップ不可
KOH-MC
この問題はコンテスト「KOH Mathematical Contest #3」の問題です。

解説

まず以下の漸化式が成立する。
$$
P(A_N(t+1)=i)=\frac{N-i+1}{N}P(A_N(t)=i-1)+\frac{i+1}{N}P(A_N(t)=i+1)
$$
これは$P(A_N(t)=-1)=P(A_N(t)=N+1)=0$に注意すれば,$0\leq i\leq N$で成立する。

$A_4(0)=2$のとき$A_4(2)=2$になるまでの$A_4(t)$のありうる推移を全て書き出すと
$$
2\longrightarrow3\longrightarrow2\\
2\longrightarrow1\longrightarrow2
$$であるから
$$
P_1=\frac{1}{2}\times\frac{3}{4}+\frac{1}{2}\times\frac{3}{4}=\frac{3}{4}
$$
同様にして$A_8(0)=2$のとき$A_8(3)=3$になるまでの$A_8(t)$のありうる推移を全て書き出すと
$$
2\longrightarrow3\longrightarrow4\longrightarrow3\\
2\longrightarrow3\longrightarrow2\longrightarrow3\\
2\longrightarrow1\longrightarrow2\longrightarrow3\\
$$であるから
$$
P_2=\frac{3}{4}\times\frac{5}{8}\times\frac{1}{2}+\frac{3}{4}\times\frac{3}{8}\times\frac{1}{4}+\frac{1}{4}\times\frac{7}{8}\times\frac{3}{4}=\frac{39}{64}
$$
さて,最初に示した漸化式の両辺に$i$をかけると
$$
iP(A_N(t+1)=i)=\frac{i(N-i+1)}{N}P(A_N(t)=i-1)+\frac{i(i+1)}{N}P(A_N(t)=i+1)
$$ここで,$i=0,1,\cdots,N$で両辺の和をそれぞれとり、$\sum$の変数の取り方をずらすと,
$$
\begin{eqnarray}
\sum_{i=0}^NiP(A_N(t+1)=i)&=&\sum_{i=0}^N\frac{i(N-i+1)}{N}P(A_N(t)=i-1)+\sum_{i=0}^N\frac{i(i+1)}{N}P(A_N(t)=i+1)\\
&=&\sum_{i=-1}^{N-1}\frac{(i+1)(N-i)}{N}P(A_N(t)=i)+\sum_{i=1}^{N+1}\frac{i(i-1)}{N}P(A_N(t)=i)\\
&=&\sum_{i=0}^{N}\frac{(i+1)(N-i)}{N}P(A_N(t)=i)+\sum_{i=0}^{N}\frac{i(i-1)}{N}P(A_N(t)=i)\\
&=&\sum_{i=0}^{N}\frac{(N-2)i+N}{N}P(A_N(t)=i)\\
&=&\left(1-\frac{2}{N}\right)\sum_{i=0}^NiP(A_N(t)=i)+1
\end{eqnarray}
$$ここで,$\mu_N(t)$の定義から
$$
\mu_N(t+1)=\left(1-\frac{2}{N}\right)\mu_N(t)+1
$$が成り立つ。$\mu_N(0)=x(0\leq x\leq N)$とすると,
$$
\mu_N(t)=\frac{N}{2}+\left(1-\frac{2}{N}\right)^t\left(x-\frac{N}{2}\right)
$$なので,$x$の値にかかわらず
$$
\lim_{t\to\infty}\mu_{50}(t)=25
$$となることがわかる。


おすすめ問題

この問題を解いた人はこんな問題も解いています

[E] Centrosymmetry

halphy 自動ジャッジ 難易度:
4年前

4

問題文

$P$ を $n\times n$ 行列とする。$P$ の第 $(i, j)$ 成分と第 $(n-i+1, n-j+1)$ 成分がつねに一致するとき,$P$ を点対称行列と呼ぶことにする。例えば $n=4$ なら,$P$ は一般に

$$
P=\begin{pmatrix} a & b & h & g \\ c & d & f & e \\ e & f & d & c \\ g& h & b & a \end{pmatrix}
$$

という形をしている。$E'$ を $4\times 4$ の単位行列とし,$4\times 4$ 行列 $J'$ を

$$
J'=\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}
$$

で定義する。

(1) 一般の $4\times 4$ 行列 $X$ に対して,$XJ'$ の $(\fbox{ア},\fbox{イ})$ 成分と $X$ の $(1,2)$ 成分は一致する。また,$J'X$ の $(\fbox{ウ},\fbox{エ})$ 成分と $X$ の $(1,2)$ 成分は一致する。よって, $4\times 4$ 行列 $P$ が点対称行列であることは,$J'PJ'=P$ が成り立つことと同値である。

(2) $E$ を $2\times 2$ の単位行列とし,$2\times 2$ 行列 $J$ を

$$
J=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

で定義する。$4\times 4$ 点対称行列 $P$ が,ある $2\times 2$ 行列 $A,B,C,D$ を用いて

$$
P=\begin{pmatrix} A & B \\ C & D \end{pmatrix}
$$

と表せたとする。(1) と同様の考察より,$D=JAJ, B=JCJ$ である。$4\times 4$ 行列 $Q$ を

$$
Q=\frac{1}{\sqrt{2}}\begin{pmatrix} E & -J \\ J & E \end{pmatrix}
$$

で定めると,$Q^{\rm T}Q=\fbox{オ}$ であり

$$
Q^{\rm T}PQ=\begin{pmatrix} \fbox{カ}+\fbox{キク} & \fbox{ケ} \\ \fbox{コ} & \fbox{サシス}-\fbox{セソ} \end{pmatrix}
$$

が成り立つ。

(3) $p$ を実定数とする。(2) の結果を利用して,行列

$$
P=\begin{pmatrix} 0 & p & 0 & 1-p \\ 0 & p^2 & 1-p & p(1-p) \\ p(1-p) & 1-p & p^2 & 0 \\ 1-p & 0 & p & 0 \end{pmatrix}
$$

の固有値を求めよう。$p=\cfrac{13}{15}$ のとき,$P$ の固有値は大きい順に

$$
\fbox{タ}, \frac{\fbox{チ}}{\fbox{ツ}}, \frac{\fbox{テ}}{\fbox{トナ}}, \frac{\fbox{ニ}}{\fbox{ヌネノ}}
$$

である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{ノ}$ には,半角数字 0 - 9 ,記号 - ,4×4行列 E', J' ,2×2行列 E, J, A, C, O のいずれかが当てはまります(B, Dを使って解答することはできません。O は零行列を表します)。$\fbox{ア}$ 〜 $\fbox{ノ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

[D] Along the Edges

hinu 自動ジャッジ 難易度:
4年前

8

問題文

$$
\newcommand{\nc}{\newcommand}
\nc{\wake}[1]{\begin{cases} #1 \end{cases}}
\nc{\f}[2]{\dfrac{#1}{#2}}
\nc{\s}[1]{\{#1\}}
\nc{\pmat}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\nc{\lr}[1]{\left( #1 \right)}
\nc{\com}[2]{{}_{#1}{\rm C}_{#2} \right)}
\nc{\bar}[1]{{\overline{#1}}}
\nc{\bb}[1]{{\mathbb {#1}}}
\nc{\rmn}[1]{{\rm #1}}
\nc{\q}{\quad}
\nc{\x}{\times}
\nc{\a}{\alpha}
\nc{\b}{\beta}
\nc{\th}{\theta}
\nc{\Q}[1]{\fbox{#1}}
$$

下のように $\rm AB=1\ ,\ BC=2$ の長方形 $\rm ABCD$ がある。点 $\rm P$ は $t=0$ で点 $\rm A$ におり、 $1$ 秒間に $1$ の速度で辺の上を進む。点 $\rm P$ が 点 $\rm A,B,C,D$ のいずれかにいるとき確率 $p$ で辺 $\rm AB$ に平行な向きに、 $1-p$ の確率で辺 $\rm AD$ に平行な向きに向きを変え、それ以外の場所で向きを変えることはないものとする。

$p=\dfrac56$ とするとき点 $\rm P$ が $2n$ 秒後 $(n=0,1,2,\cdots)$ に点 $\rm A$ にいる確率を求めたい。

点 $\rm P$ が $2n$ 秒後に点 $\rm A,D$ にある確率を $A_n,D_n$ とおく。このとき $X_n=A_n+D_n$ とおくと漸化式
$$
X_{n+1}=\f{\Q{ア}}{\Q{イ}}X_n +\f{\Q{ウ}}{\Q{エ}}
$$
が成り立つ。また $Y_n=A_n-D_n$ とおくと漸化式
$$
Y_{n+2}-\f{\Q{オ}}{\Q{カ}}Y_{n+1}+\f{\Q{キ}}{\Q{ク}}Y_n=0
$$
が成り立つ。これらを初期条件 $X_0=\Q ケ\ ,Y_0=\Q{コ}\ ,Y_1=\f{\Q{サ}}{\Q{シ}}$ のもとで解くことで
$$
A_n=\f{\Q ス}{\Q セ}+\f{\Q ソ}{\Q タ}\lr{\f{\Q チ}{\Q ツ}}^n-\lr{\f{\Q テ}{\Q ト}}^n+\f{\Q ナ}{\Q ニ}\lr{\f{\Q ヌ}{\Q ネ}}^n
$$
を得る。なお ${\f{\Q チ}{\Q ツ}}<{\f{\Q ヌ}{\Q ネ}}$ である。

解答形式

上の空欄を埋めよ。解答は半角数字・改行区切りで入力すること。ただし $\Q ア$ から $\Q ネ$ にはそれぞれ 1 から 999 までの整数が入り、分数は既約分数の形で表してある。

[E] minimum value (hard)

okapin 自動ジャッジ 難易度:
4年前

5

問題文

$a,b$を$a>1,b>1$を満たす実数とする。
$\theta$が$0\leq\theta<2\pi$の範囲を動くとき$f(\theta)=\sqrt{a^2-2a\cos\theta+1}+\sqrt{b^2-2b\sin\theta+1}$の最小値が$\sqrt{a^2+b^2}$となるような$(a,b)$の存在範囲を$ab$平面に図示したとき、その領域の面積を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

[F] Slow and Steady

halphy 自動ジャッジ 難易度:
4年前

3

問題文

$n$ を自然数とする。置換 $\sigma\in \mathfrak{S}_n$ に対して,$\sigma$ の近道度 $m(\sigma)$ を次のように定義する。

  • $\sigma$ を 互いに素な(共通元をもたない) 巡回置換の積に表したとき,各巡回置換の長さの積の逆数を $m(\sigma)$ とする。(太字部分は19:42追記)

例えば $\sigma=(1 4 2)(5 6 7)(3)\in \mathfrak{S}_7$ なら,$\sigma$ は長さ $3, 3, 1$ の巡回置換からなるから,$\sigma$ の近道度 $m(\sigma)$ は

$$
m(\sigma)=\frac{1}{3\cdot 3\cdot 1}=\frac{1}{9}
$$

である。自然数 $n$ に対して,${1,\cdots, n}$ の置換(これは $n!$ 通りある)の近道度の平均を

$$
f_n=\frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n} m(\sigma)
$$

とおく。

$$
f_1=1, \; f_2=\frac{\fbox{ア}}{\fbox{イ}}, \; f_4=\frac{\fbox{ウエオ}}{\fbox{カキク}}
$$

であり,

$$
\sum_{n=0}^{\infty} f_n=\fbox{X}
$$

である(級数が収束することは証明なしに認めてよい)。ただし $f_0=1$ と約束する。

※ $\mathfrak{S}_n$ は $n$ 次対称群を表す(19:03追記)。

解答形式

$\fbox{ア}$ 〜 $\fbox{ク}$ には 0 - 9 の数字が当てはまります。$\fbox{ X }$にはある実数が当てはまります。空欄のある分数はすべて既約です。

  • 1行目 には $\fbox{ア}$ に当てはまる数を半角で入力してください。
  • 2行目 には $\fbox{イ}$ に当てはまる数を半角で入力してください。
  • 3行目 には $\fbox{ウエオ}$ に当てはまる数を半角で入力してください。
  • 4行目 には $\fbox{カキク}$ に当てはまる数を半角で入力してください。
  • 5行目 には $\fbox{ X }$ に当てはまる数を入力します。答えを $10$ 進小数で表し,小数第2位を四捨五入して小数第1位まで求めてください。例えば,$9.876\cdots $ が答えになる場合は 9.9 と解答してください。

ヒント

  • $f_0,\cdots, f_{n-1}$ を使って $f_n$ を表すことができます。
  • $f_n$ の母関数を $f(t)=\displaystyle{\sum_{n=0}^{\infty}} f_nt^n$ とおくと,$f(t)$ はとある微分方程式を満たします。

[A] Times

hinu 自動ジャッジ 難易度:
4年前

14

A君は $38\times 57$ を次のように計算した。

$$
\newcommand{\nc}{\newcommand}
\nc{\wake}[1]{\begin{cases} #1 \end{cases}}
\nc{\f}[2]{\dfrac{#1}{#2}}
\nc{\s}[1]{\{#1\}}
\nc{\pmat}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\nc{\lr}[1]{\left( #1 \right)}
\nc{\com}[2]{{}_{#1}{\rm C}_{#2} \right)}
\nc{\bar}[1]{{\overline{#1}}}
\nc{\bb}[1]{{\mathbb {#1}}}
\nc{\rmn}[1]{{\rm #1}}
\nc{\q}{\quad}
\nc{\x}{\times}
\nc{\a}{\alpha}
\nc{\b}{\beta}
\nc{\th}{\theta}
\nc{\Q}[1]{\fbox{#1}}
\nc{\qq}{&\q\q\q\q\q&}\begin{eqnarray}38\qq 57 \qq \rm x\\19\qq 114\qq \rm o\\9\qq 228\qq \rm o\\4\qq 456\qq \rm x\\2\qq 912\qq \rm x\\1\qq \underline{1824}\qq \rm o\\ \qq 2166\qq \rm \\\end{eqnarray}
$$

A君の計算方法に基づいて以下の $43\x 71$ の計算の空欄を埋めよ。

$$
\nc{\qq}{&\q\q\q\q\q&}\begin{eqnarray}43\qq 71 \qq \rm o\\\Q{ア}\qq \Q{オ}\qq \rm \Q{ケ}\\\Q{イ}\qq \Q{カ}\qq \rm \Q{コ}\\\Q{ウ}\qq \Q{キ}\qq \rm \Q{サ}\\\Q{エ}\qq \Q{ク}\qq \rm \Q{シ}\\1\qq \underline{2272}\qq \rm o\\ \qq 3053\qq \rm \\\end{eqnarray}
$$

解答を改行区切りで入力せよ。ただし $\Q{ア}$ から $\Q{ク}$ には 1 から 9999 までの整数が入り、 $\Q{ケ}$ から $\Q{シ}$ には o または x が入る。

[C] A Downward Tower

halphy 自動ジャッジ 難易度:
4年前

2

問題文

$n=0,1,\cdots$ に対し,$I_n$を
$$
I_n=\sum_{k=0}^{\infty}\frac{1}{2^{k}k!(2n+2k-1)!!}
$$で定める。ただし $(-1)!!=1$ とする。この級数は収束することが知られている(例えば,ダランベールの判定法を適用すればよい)。特に
$$
I_0+I_1=\fbox{ア}
$$である。また,$\{I_n\}$ は漸化式
$$
I_{n-1}-I_{n+1}=(\,\fbox{イ}\,n-\fbox{ウ}\,)I_n\quad(n=1,2,\cdots)
$$を満たし
$$
\lim_{n\to\infty}\frac{I_{n+1}}{I_n}=\fbox{エ}
$$が成り立つ。これらの結果を用い,漸化式を変形すると
$$
1+\cfrac{1}{3+\cfrac{1}{5+\cfrac{1}{7+\cfrac{1}{\ddots}}}}=\frac{\fbox{オ}^{\fbox{カ}}+\fbox{キ}}{\fbox{ク}^{\fbox{ケ}}-\fbox{コ}}
$$が得られる。ただし $\fbox{オ}\neq\fbox{キ}$ とする。

注意

自然数 $n\geq 1$ に対し,$n!!$ は $1$ 個とばしの階乗を表す。例えば,$n$ が奇数のとき
$$
n!!=n(n-2)(n-4)\cdots 3\cdot 1
$$である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{コ}$ には,半角数字 0 - 9 ,記号 - ,円周率 π ,自然対数の底 e のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{コ}$ に当てはまるものを改行区切りで入力してください。

[F] endless sequence

okapin 自動ジャッジ 難易度:
4年前

9

問題文

(1)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときの循環節(※)が2以上8以下であるような$p$は6つ存在する。フェルマーの小定理を用いて$p$とその$p$に対する$\frac{1}{p}$の循環節の長さの関係を導き、6つの$p$の値を全て答えよ。

(2)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときに最大で1が連続して並ぶ個数を$f(p)$とおく。例えば$\frac{1}{3}=0.01010…_{(2)}$より$f(3)=1$である。(1)を満たす$p$の中で$f(p)$が最大となるのは$p$がいくらのときか。Midyの定理を用いることによって求め、その値を答えよ。


(※)循環節とは、循環小数の繰り返される数字の列のうちその長さが最小でありかつその先頭が最も先に来るようなもののことである。例えば$\frac{1}{3}=0.01010…_{(2)}$となり、このときの循環節は$01$であり、$0101$や$10$は循環節とならない。


解答形式

(1)の全ての答えを小さい順に1~6行目に半角数字で入力してください。また、(2)の答えを7行目に半角数字で入力してください。

[D] monotonous decrease

Benzenehat 自動ジャッジ 難易度:
4年前

13

問題文

$k$を$0$以上の実数, $e$を自然対数の底とする。数列$a_n$を
$$a_n=\frac{n!e^n}{n^{n+k}}$$
と定める。任意の自然数$n$に対して, $a_{n+1} < a_n$が成り立つような最小の$k$を求めよ。

解答形式

整数または既約分数で答えてください。

[C]線形代数のよくある問題

fusshi 自動ジャッジ 難易度:
4年前

3

問題文

行列$A$を次で定義する。
$$
A=
\begin{pmatrix}
6& -3 & -7 & 0 & 0 & 0\\
-1 & 2 & 1 & 0 & 0 & 0\\
5& -3 & -6 & 0 & 0 & 0\\
0& 0 & 0 & 1 & 2 & 1\\
0& 0 & 0 & -1 & 4 & 1\\
0& 0 & 0 & 2 & -4 & 0\\
\end{pmatrix}
$$
このとき次の実線形空間の次元を求めよ。
$$
V=\{X\in M_{6}(\mathbb{R})\mid AX=XA\}
$$
ただし、$M_{6}(\mathbb{R})$とは6行6列の実正方行列全体の集合である。

解答形式

半角数字で答えよ。

[E]積分の入った極限値

fusshi 自動ジャッジ 難易度:
4年前

3

問題文

$\displaystyle f(x)=\int_{0}^{1}\frac{(1+xt^2)-e^{xt^2}}{t\cdot e^{xt^2}}dt$とおく。
1 $\displaystyle \lim_{x \to 0}\frac{f(x)}{x^p}$が有限値となる$p$とその極限値$\alpha$を求めよ。
2 $\displaystyle \lim_{x \to \infty}\frac{f(x)}{(\log{x})^q}$が有限値となる$q$とその極限値$\beta$を求めよ。

解答形式

$p=\fbox{ア}$
$\alpha=\displaystyle-\frac{\fbox{イ}}{\fbox{ウ}}$
$q=\fbox{エ}$
$\beta=\displaystyle-\frac{\fbox{オ}}{\fbox{カ}}$
である。$\fbox{ア}$から順に1行ごとに答えよ。

[D] Eigensequence

halphy 自動ジャッジ 難易度:
4年前

6

問題文

漸化式
$$
a_{n+3}=3a_{n+2}-4a_{n+1}+2a_n\quad (n=1,2,\cdots)
$$および
$$
a_1=1, \; a_2=0, \; a_3=0
$$を満たす数列 $\{a_n\}$ を考える。次の空欄 $\fbox{ア}$ 〜 $\fbox{フ}$ に当てはまる数字を答えなさい。

  • 漸化式
    $$
    a_{n+3}=3a_{n+2}-4a_{n+1}+2a_n\quad (n=1,2,\cdots)
    $$を満たす数列全体の集合を $V$ とする。数列 $a_n, b_n\in V$ および $c\in\mathbb{C}$ に対して,第 $n$ 項が $ca_n, a_n+b_n$ であるような数列をそれぞれ数列 $a_n$ の $c$ 倍,数列 $a_n, b_n$ の和と定義することにすると,この和とスカラー倍により $V$ は $\mathbb{C}$ 上のベクトル空間になる(確かめよ)。ここで,$V$ の元 $a_n$ は,$a_1, a_2, a_3$ を定めることで完全に決定できる。すなわち,写像 $\varphi: V \to \mathbb{C}^3$ を
    $$
    \varphi(a_n)=\begin{pmatrix} a_1 \\ a_2 \\ a_3\end{pmatrix}
    $$で定めると,$\varphi$ は全単射である。しかも,$\varphi$ は線型写像だから,$\varphi$ はベクトル空間の同型になる。$V$ は $\fbox{ア}$ 次元である。また,$e_n^{(1)}, e_n^{(2)}, e_n^{(3)}\in V$ を
    $$
    \varphi(e_n^{(1)})=\begin{pmatrix} 1 \\ 0 \\ 0\end{pmatrix},\; \varphi(e_n^{(2)})=\begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix},\; \varphi(e_n^{(3)})=\begin{pmatrix} 0 \\ 0 \\ 1\end{pmatrix}
    $$となるように定めると,$e_n^{(1)}, e_n^{(2)}, e_n^{(3)}$ は $V$ の基底になる。

  • $V$ 上の線型変換 $L: V\to V$ を次のように定義する。$a_n\in V$ に対して,$L(a_n)$ を第 $1, 2, 3$ 項がそれぞれ $a_2, a_3, a_4$ である数列とする($L$ が線型写像になることを確かめよ)。このとき,$L(a_n)$ の第 $n$ 項は $a_{n+\fbox{イ}}$ である。基底 $e_n^{(1)}, e_n^{(2)}, e_n^{(3)}$ のもとでの $L$ の表現行列 $L_A$ は
    $$
    L_A=\begin{pmatrix} \fbox{ウ} & \fbox{エ} & * \\ \fbox{オ} & \fbox{カ} & \fbox{キ} \\ \fbox{ク} & \fbox{ケコ} & \fbox{サ}\end{pmatrix}
    $$である。

  • $L_A$ の固有値を $\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}$ とする($\lambda^{(1)}\in\mathbb{R}, {\rm Im}(\lambda^{(2)})>0, {\rm Im}(\lambda^{(3)})<0$)。このとき
    \begin{align}
    \lambda^{(1)}&=\fbox{シ}\\
    {\rm Re}(\lambda^{(2)})={\rm Re}(\lambda^{(3)})&=\fbox{ス}\\
    {\rm Im}(\lambda^{(2)})=-{\rm Im}(\lambda^{(3)})&=\fbox{セ}
    \end{align}である。

  • 固有値 $\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}$ に対応する固有ベクトルをそれぞれ $\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}$ とする。固有ベクトルには定数倍の不定性があるが,$\alpha^{(j)}\;(j=1,2,3)$ の第 $1$ 成分が固有値 $\lambda^{(j)}$ に一致するようにとると
    \begin{align}
    \alpha^{(1)}=\begin{pmatrix} \lambda^{(1)} \\ \fbox{ソ} \\ * \end{pmatrix},\; \alpha^{(2)}=\begin{pmatrix} \lambda^{(2)} \\ \fbox{タ}\;i \\ * \end{pmatrix},\; \alpha^{(3)}=\begin{pmatrix} \lambda^{(3)} \\ * \\ \fbox{チツ}-\fbox{テ}\;i \end{pmatrix}
    \end{align}である。

  • $\varphi(\beta_n^{(1)})=\alpha^{(1)}, \;\varphi(\beta_n^{(2)})=\alpha^{(2)}, \;\varphi(\beta_n^{(3)})=\alpha^{(3)}$ となる数列 $\beta_n^{(1)}, \beta_n^{(2)}, \beta_n^{(3)}\in V$ をとる。$\beta_n^{(1)}, \beta_n^{(2)}, \beta_n^{(3)}\in V$ は $V$ の基底をなすから,$V$ の任意の元 $a_n$ はこれらの線型結合で表すことができる。例えば,$a_n\in V$ が
    $$
    a_1=1, \; a_2=0, \; a_3=0
    $$を満たすとき
    $$
    a_n=\fbox{ト}\;\beta_n^{(1)}-\frac{\beta_n^{(2)}-\beta_n^{(3)}}{\fbox{ナ}\; i}
    $$が成り立つ。これを変形すると
    $$
    a_n=\fbox{ニ}-\left(\sqrt{\fbox{ヌ}}\;\right)^n\sin\left(\frac{n\pi}{\fbox{ネ}}\right)
    $$となる。また,$a_1,\cdots, a_{100}$ のうち $a_n$ が最大となるのは $n=\fbox{ノハ}, \fbox{ヒフ}$ のときである。ただし $\fbox{ノハ} < \fbox{ヒフ}$ とする。

※この問題では,数列とは写像 $a: \mathbb{N} \to \mathbb{C}$ のことをいう。$n\in\mathbb{N}$ に対して,$a(n)$ のことを単に $a_n$ と表記する。また,記号の濫用であるが $a$ を $\{a_n\}, a_n$とも書く。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{フ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{フ}$ に当てはまるものを改行区切りで入力してください。

求値問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

次の文章の空欄を埋めてください。

$n$個の実数$x_1,x_2,\cdots,x_n$が、$x_1+2x_2+3x_3+\cdots+nx_n=n$を満たすとき、$x_1^2+x_2^2+\cdots+x_n^2$の最小値を$m_n$とすると、
$$
m_n=\frac{\fbox アn}{(n+\fbox イ)(\fbox ウn+1)}
$$
であり、
$$
\lim_{n\rightarrow\infty}\left(m_1+\frac{m_2}{2}+\cdots+\frac{m_n}{n}\right)=\fbox{エオ}\left(-\frac{1}{\fbox カ}+\ln{\fbox キ}\right)
$$
である。

解答形式

$\fbox ア~\fbox キ$には$1$以上$9$以下の整数が入ります。文字列アイウエオカキを半角数字で解答してください。
例: $\fbox ア=1,\fbox イ=2,\fbox ウ=3,\fbox {エオ}=45,\fbox カ=6,\fbox キ=7$ $\rightarrow$ $1234567$ と解答