[A] minimum value (easy)

okapin 自動ジャッジ 難易度: 数学 > 高校数学
2020年10月30日20:00 正解数: 12 / 解答数: 15 (正答率: 80%) ギブアップ不可
この問題はコンテスト「Okapin Mathematical Contest 2」の問題です。

問題文

原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

[D] monotonous decrease

Benzenehat 自動ジャッジ 難易度:
4年前

13

問題文

$k$を$0$以上の実数, $e$を自然対数の底とする。数列$a_n$を
$$a_n=\frac{n!e^n}{n^{n+k}}$$
と定める。任意の自然数$n$に対して, $a_{n+1} < a_n$が成り立つような最小の$k$を求めよ。

解答形式

整数または既約分数で答えてください。

[B] constant variable

Benzenehat 自動ジャッジ 難易度:
4年前

19

問題文

ある大きさの球から、ある直径の円柱をくりぬいた。円柱の軸は球の中心を通る。(ビーズのような形を想像してください)
この立体の体積が$36\pi$のとき、以下のうちいずれかの値が一意に定まる。

  1. 円柱の底面の半径
  2. 球の半径
  3. 円柱の深さ

一意に定まるものの番号と、その値を求めよ。

解答形式

一意に定まるものの番号を半角数字で1行目に、その値を2行目に入れてください。2行目は整数または既約分数で答えてください。

解答例

1
4

求面積問題10

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。

解答形式

半角数字で解答してください。

[C] coin tossing

Benzenehat 自動ジャッジ 難易度:
4年前

28

問題文

1円, 5円, 10円, 50円, 100円, 500円の硬貨が1枚ずつある。1回目の試行で6枚の硬貨を投げ、表が出た硬貨をもらうことができる。2回目の試行では、残った硬貨を投げ、やはり表が出た硬貨をもらうことができる。もらえる金額が600円以上になったらこの試行は終了するものとする。

(1) 1回目の試行で終わる確率はいくらか。
(2) 2回目の試行で終わる確率はいくらか。

解答形式

(1)の答えを1行目に、(2)の答えを2行目に既約分数で入れてください。

解答例

1/2
3/10

求面積問題13

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

図のように正方形・半円が配置されています。正方形の一辺の長さが2であるとき、青で示した部分の面積(の合計)を求めてください。

解答形式

半角数字で解答してください。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。

求面積問題11

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

【解答形式に注意!】

半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。
ただし、同じ印をつけた部分の長さは等しいです。

解答形式

(青の面積) > (赤の面積) なら 1
(青の面積) = (赤の面積) なら 2
(青の面積) < (赤の面積) なら 3
を、半角数字で解答してください。

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

14

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

求長問題4

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

正七角形2つが図のように配置されています。
赤色の線分の長さが7のとき、青色の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求長問題2

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。

[F] endless sequence

okapin 自動ジャッジ 難易度:
4年前

9

問題文

(1)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときの循環節(※)が2以上8以下であるような$p$は6つ存在する。フェルマーの小定理を用いて$p$とその$p$に対する$\frac{1}{p}$の循環節の長さの関係を導き、6つの$p$の値を全て答えよ。

(2)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときに最大で1が連続して並ぶ個数を$f(p)$とおく。例えば$\frac{1}{3}=0.01010…_{(2)}$より$f(3)=1$である。(1)を満たす$p$の中で$f(p)$が最大となるのは$p$がいくらのときか。Midyの定理を用いることによって求め、その値を答えよ。


(※)循環節とは、循環小数の繰り返される数字の列のうちその長さが最小でありかつその先頭が最も先に来るようなもののことである。例えば$\frac{1}{3}=0.01010…_{(2)}$となり、このときの循環節は$01$であり、$0101$や$10$は循環節とならない。


解答形式

(1)の全ての答えを小さい順に1~6行目に半角数字で入力してください。また、(2)の答えを7行目に半角数字で入力してください。

整数問題②

lucy 自動ジャッジ 難易度:
4年前

14

問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)