[A] よくある級数

ofukufukufuku 自動ジャッジ 難易度: 数学 > 高校数学
2020年8月15日18:00 正解数: 12 / 解答数: 12 (正答率: 100%) ギブアップ不可
この問題はコンテスト「KOH Mathematical Contest #2」の問題です。

全 12 件

回答日時 問題 解答者 結果
2024年2月29日14:52 [A] よくある級数 Prime-Quest
正解
2024年2月22日4:50 [A] よくある級数 natsuneko
正解
2024年2月9日0:41 [A] よくある級数 nmoon
正解
2023年11月20日17:12 [A] よくある級数 naoperc
正解
2020年9月5日21:35 [A] よくある級数 fusshi
正解
2020年8月16日13:37 [A] よくある級数 baba
正解
2020年8月15日23:49 [A] よくある級数 km299792458
正解
2020年8月15日19:09 [A] よくある級数 masorata
正解
2020年8月15日18:55 [A] よくある級数 mochimochi
正解
2020年8月15日18:31 [A] よくある級数 bekasa001
正解
2020年8月15日18:10 [A] よくある級数 green+
正解
2020年8月15日18:03 [A] よくある級数 nesya
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

[C] 奇妙な数列

ofukufukufuku 自動ジャッジ 難易度:
4年前

12

問題文

以下のような数列 $\{a_n\}$ を考える。
$$
a_n=1+\sum_{m=1}^{2^n}{\rm floor}\left[\sqrt[n]{\frac{n}{\displaystyle{\sum_{k=1}^m}\; {\rm floor}\left(\cos^2\cfrac{(k-1)!+1}{k}\pi\right)}}\right]
$$なお、${\rm floor}(x)$ は $x$ 以下の最大の整数を返す関数とする。このとき、$a_{20}$ を求めよ。

ただし、必要であれば以下の定理および不等式を用いても良い。

  1. $n$ が素数のとき
    $$\quad(n-1)!\equiv-1 \pmod n$$
  2. $n\geq 1$ のとき
    $$1\leq\sqrt[n]{n}<2$$

解答形式

半角数字で入力してください.

[B] Dots on the Ball

halphy 自動ジャッジ 難易度:
4年前

25

問題文

$r$ を正の整数とする。$xyz$ 空間において,原点を中心とする半径 $\sqrt{r}$ の球面を $S_r$ で表すとき,次の問いに答えなさい。

  1. $S_r$ が格子点を含まないような最小の $r$ を求めなさい。
  2. $S_r$ が格子点を含まず,$r$ が $8$ の倍数であるような最小の $r$ を求めなさい。

※点 $(x,y,z)$ が格子点であるとは,$x,y,z$ がすべて整数であることをいう。

解答形式

改行区切りで,1行目に 1. の答えを,2行目に 2. の答えを入力してください。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

12

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$

求面積問題10

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求面積問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

図中、同じ印のついている辺・角同士は等しいです。
緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

[E] modじゃんけん

hinu 自動ジャッジ 難易度:
4年前

14

問題文

$n\;(\geq 2)$ を自然数とするとき,以下の試行を行うことを考える。


試行

  • $n$ 人が $0,1,2$ のいずれかひとつの数を無作為に選ぶ。
  • 人 $i\; (i=1,2,\cdots, n)$ が選んだ数を $a_i$ とする。各人 $i$ に対して,
    $$
    a_i\equiv\sum_{j=1}^n a_j\; ({\rm mod} \; 3)
    $$ならば人 $i$ は生存し,そうでないなら脱落する。この試行をmodじゃんけんと呼ぶことにする。

$n$ 人がmodじゃんけんを $1$ 回行い,全員が生存するか全員が脱落するとき,modじゃんけんの結果はあいこになると定義する。

$n$ 人がmodじゃんけんを $1$ 回行ってあいこになる確率を $p_n$ とするとき

$$
p_2=\frac{\fbox{ア}}{\fbox{イ}},\; p_3=\frac{\fbox{ウ}}{\fbox{エ}},\; p_4=\frac{\fbox{オ}}{\fbox{カキ}}
$$

である。$n$ を $\fbox{ク}$ で割った余りが $\fbox{ケ}$ であるとき

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{サ}}{\fbox{シ}^n}
$$

であり,そうでないときには

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{ス}}{\fbox{シ}^n}
$$

である。また,

$$
\lim_{n\to\infty} p_n=\fbox{セ}
$$

が成り立つ。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{セ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{セ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

求値問題2

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。
$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}
$$

解答形式

$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値)
$$
となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。
ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。

整数問題②

lucy 自動ジャッジ 難易度:
4年前

14

問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
4年前

13

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。

[A] minimum value (easy)

okapin 自動ジャッジ 難易度:
3年前

15

問題文

原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
3年前

6

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。