OMCE011B?

uran 自動ジャッジ 難易度: 数学 > 競技数学
2025年8月3日0:32 正解数: 2 / 解答数: 9 (正答率: 22.2%) ギブアップ数: 2

問題文

$a_{1},a_{2}, \cdots , a_{1500}$ は $1$ 以上 $3$ 以下の整数からなる数列であり,$a_{1501}=a_{1} =1,a_{1502}=a_{2}$ と定義すると全ての $1500$ 以下の正整数 $k$ で $a_{k+1} \neq a_{k}$ が成り立ち,かつ $1500$ 以下の正整数 $i$ のうち,

・$(a_{i},a_{i+1})=(1,3)$ となるものがちょうど $132$ 個
・$(a_{i},a_{i+1})=(2,1)$ となるものがちょうど $213$ 個
・$(a_{i},a_{i+1})=(3,2)$ となるものがちょうど $321$ 個
・$(a_{i},a_{i+1},a_{i+2})=(1,2,3)$ となるものがちょうど $123$ 個

ずつ存在します.この数列としてありうるものの数が $3$ で割れる最大の回数を求めてください.(電卓の使用を推奨します.)

解答形式

半角数字で解答してください.


ヒント1

想定解では少し知識が必要です, がんばって調べましょう.

ヒント2

グラフに言い換えます,途中まではOMCE011Bの公式解説と同様です.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

Bar Chart

aa36 自動ジャッジ 難易度:
5月前

12

問題文

$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.

解答形式

末尾に「(通り)」などをつけず,非負整数で答えてください.

床と天井

kiwi1729 自動ジャッジ 難易度:
29日前

11

問題文

自然数列$\ a_n$を以下のようにして定める.
$$a_{n+1}=\lceil \sqrt{n} \rceil a_n+\lfloor \sqrt{n} \rfloor$$
ただし,$\ \lceil x \rceil \in \mathbb{N},\ x \le \lceil x \rceil <x+1\ ,\ \lfloor x \rfloor \in \mathbb{N},\ x-1 < \lfloor x \rfloor \le x$
です.
このとき,$\ a_{2026}\ $が$\ 5$ で割り切れる最大の回数を求めてください.

解答形式

整数で解答してください.

整数問題

roku_omc 自動ジャッジ 難易度:
11日前

4

問題文

$30! \pmod{31\times30\times 29^2}$ の値を求めてください.

解答形式

半角の整数で入力してください.

200C

Nyarutann 自動ジャッジ 難易度:
5月前

5

問題文

$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.

  • $3$ 項の順番を並び替えることで等差数列になる.

例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

OMCE017E 原案(300くらい)

Nyarutann 自動ジャッジ 難易度:
5月前

5

問題文

$i=1, 2, \ldots, 999$ に対して,数 $i$ が書かれたカードがそれぞれ $1001$ 枚あり,同じ数が書かれたカードは区別しないものとします.これらを左右 $1$ 列に並べる方法であって,次の条件を満たすカード $X$ がちょうど $1$ 枚あるようなものが $N$ 通りあるものとします.

  • カード $X$ は一番右のカードではない

  • カード $X$ に書かれた数は,カード $X$ の右隣のカードに書かれた数より大きい

$N$ を $997$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

没問

poino 自動ジャッジ 難易度:
16月前

5

問題文

$n$ 以下の正整数のうち $n$ と互いに素なものの個数を表す $φ(n)$ を $a$ 回合成した関数を $φ^a(n)$ と書くとき、$φ^a(n)=1$ を満たす最小の $a$ が $8$ であるような $n$ の最小値と最大値のを解答してください。

解答形式

半角数字で入力してください。

9日前

7

問題文

$m,n$を整数とします。
$$(m+n)!+2025^{{n}^{m}}=2026^{mn+1}$$
を満たす組$(m,n)$について、$mn$の総積を求めてください。

解答形式

半角数字で入力してください。

連立方程式だよ

udonoisi 自動ジャッジ 難易度:
7月前

6

問題文

$11$ 個の実数 $A_0 , A_1 , \cdots , A_{10} $ が $n=0 , 1 , \cdots , 9$ に対して$$\sum_{k=0}^{10}{A_kk^n}=0$$を満たします. $A_0=1$ のとき, $\sum_{k=0}^{10}{A_kk^{10}}$ の値を求めてください.
ただし, $0^0=1$とします.

解答形式

非負整数を答えてください.

没問2

mani 自動ジャッジ 難易度:
14日前

7

$m^{n+1}+n^m+1=2026$ を満たす正整数の組 $(m,n)$ を全てについて,$mn$の総和を求めてください.

16月前

3

問題文

$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする
$f(x)$ が最小値を取るときの $x$ の値を求めよ

解答形式

解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください

第1問

sulippa 採点者ジャッジ 難易度:
8月前

1

設問1

数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。

解答形式

半角1スペースで答えのみ

第4問

sulippa 採点者ジャッジ 難易度:
8月前

1

設問4

数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式
$$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$
を満たす。一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。