$a_{1},a_{2}, \cdots , a_{1500}$ は $1$ 以上 $3$ 以下の整数からなる数列であり,$a_{1501}=a_{1} =1,a_{1502}=a_{2}$ と定義すると全ての $1500$ 以下の正整数 $k$ で $a_{k+1} \neq a_{k}$ が成り立ち,かつ $1500$ 以下の正整数 $i$ のうち,
・$(a_{i},a_{i+1})=(1,3)$ となるものがちょうど $132$ 個
・$(a_{i},a_{i+1})=(2,1)$ となるものがちょうど $213$ 個
・$(a_{i},a_{i+1})=(3,2)$ となるものがちょうど $321$ 個
・$(a_{i},a_{i+1},a_{i+2})=(1,2,3)$ となるものがちょうど $123$ 個
ずつ存在します.この数列としてありうるものの数が $3$ で割れる最大の回数を求めてください.(電卓の使用を推奨します.)
半角数字で解答してください.
想定解では少し知識が必要です, がんばって調べましょう.
グラフに言い換えます,途中まではOMCE011Bの公式解説と同様です.
この問題を解いた人はこんな問題も解いています