以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。 $$ \begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases} $$
半角数字で個数を入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$x$を$x^2+2ax+b=0$の解でない実数、$a,b$を$100$以下の正整数とする。 ある$a,b$に対して $$x^2+2ax+b-\frac{1}{x^2+2ax+b}$$ の最小値を$min(x)$とすると、この$min(x)$の値は、$a,b$の値によって変わる。$min(x)$が一意に定まり、かつその$min(x)$を最小にするような$a,b$の値をすべて求めよ。
追記:問題文を一部変更しました。
ありうる組$(a,b)$について、$a+b$の総和を半角数字で入力してください。
モニターに0が表示されている。ここには3つのボタンがあり、 ・ボタン$A$を押すとモニターの数字が1増える。 ・ボタン$B$を押すとモニターの数字が2増える。 ・ボタン$C$を押すとモニターの数字が3増える。 ボタン$A~C$をそれぞれ任意の回数押したとき、 最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。
例)半角数字で入力してください。
$AB=BC$で、面積が$2025$であるような二等辺三角形$ABC$がある。$AB(=BC)$の最小値を求めよ。
半角数字で$AB^2(=BC^2)$の値を入力してください。
1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ. (ただしpは素数とする)
(半角の自然数が答え)
$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.
末尾に「(通り)」などをつけず,非負整数で答えてください.
太郎君は遅刻魔で、よく遅刻をする。 それを見かねた先生は、 ・3日連続で遅刻したら特別指導 ・10日間の間に6回以上遅刻をしたら特別指導 というルールを設けた。このとき、10日間で太郎君が特別指導を受けないよう登校する方法は合計何通りあるか。
$p=3, \quad q=5, \quad r=7$
$X = p^q + q^p$ $Y = q^r + r^q$ $Z = r^p + p^r$
$N = X^p + Y^q + Z^r$
このとき、$N$を$105$で割った余りを求めよ。
半角左詰め
整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。
$x \equiv p \pmod{9797}$ $x \equiv 11p + 69 \pmod{9991}$
この条件を満たす最小の素数 $p$ を求めよ。
4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか? 但し、「ループの一部分である」とは、 全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。
半角数字で入力してください。
三角形 $ABC$ において,角 $A,B,C $の傍接円の半径をそれぞれ $r_A,r_B,r_C$ とし,内接円の半径を $r $とする.このとき,三角形 $ABC$ が以下の条件を満たすとき$r_A\cdot r_B\cdot r_C \cdot r$の最大値を求めよ. $$BC=28,∠BAC=60 $$
自然数となるので、その値を入力してください
10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.
本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。
互いに素な正整数q,pを用いて p/q と表せるため、p+qを解答してください。