階乗を含む整数問題

Auro 自動ジャッジ 難易度: 数学 > 高校数学
2025年11月20日19:19 正解数: 1 / 解答数: 1 (正答率: 100%) ギブアップ不可

全 1 件

回答日時 問題 解答者 結果
2025年11月29日2:23 階乗を含む整数問題 MACHICO
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

塗りつぶされた面積

smasher 自動ジャッジ 難易度:
5時間前

2

問題文

下図の塗りつぶされた部分の面積を求めよ。

条件
・四角形$ABCD$は一辺の長さが$3$の正方形
・円はどちらも正方形の$2$辺に接していて、その半径は$1$

解答形式

答えは正整数$a,c$と平方因子を持たない正整数$b$および互いに素な正整数$d,e$を用いて$\dfrac{π}{a}+\dfrac{\sqrt{b}}{c}-\dfrac{d}{e}$と表されるので、$a+b+c+d+e$の値を半角数字で入力してください。


問題文

二等辺三角形ABCがあり、AB=AC=xcmである。また、頂角は150°である。下の画像の式が二等辺三角形ABCの値と等しくなった時、xの数値を求めなさい。

分かりずらい方へ

−{√(x^8/x^4)+√(x^8/x^2)}/(x^3/x+x^5/x^2)+11/2-(x/√x)^2+8x^2÷4x√x+x^2×x/(√x)^6+481/26-2/√x×(x/√x)^2+2x

解答形式

x=は必要ありません。数値のみを記入してください
(例) 810

二重根号を外したい

smasher 自動ジャッジ 難易度:
33日前

26

問題文

同様に確からしいサイコロを$2$回振り、出た目を順に$a,b$とします。
$\sqrt{a-\sqrt{b}}$の二重根号が外せる確率を求めてください。

解答形式

二重根号を外せる確率は互いに素な整数$p,q$を用いて$\dfrac{p}{q}$と表されるので、$p+q$の値を半角数字で入力してください。

解答に誤りがありました。(修正済み)大変申し訳ございません。

5次方程式

Hensachi50 採点者ジャッジ 難易度:
10月前

3

問題文

次の方程式を解いて、$x$の値をすべて求めてください。
$$x^5+2x^4+3x^3+3x^2+2x+1=0$$

解答形式

$a,b,c,d,e$のように解答してください。($π$はpiで$i$(虚数単位)はiで分数は$\frac{1}{2}$の場合は1/2のように解答してください。)

極限

sulippa 自動ジャッジ 難易度:
9月前

7

問題文

n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。

量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。

次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$

ただし、オイラー・マスケロー二定数を $γ$ とする。

解答形式

半角で


問題文

以下の漸化式で与えられる数列${a_n},{b_n}$を考える。ただし、$n$は非負整数であるとし、${a_n}$の初項は$a_0=1$とする。
$\displaystyle a_{n+1}=\sum_{k=0}^na_ka_{n-k} , \displaystyle b_{n+1}=\sum_{k=0}^n (k+1)a_ka_{n-k}$
(1)$b_n$を$a_n$で表わせ。
(2)$\displaystyle a_{n+1}=\frac{2(2n+1)}{n+2}a_n$を証明せよ。
(3)それぞれの数列の一般項$a_n,b_n$を求めよ。
(4)$\displaystyle \lim_{n \to \infty} \sqrt[n]{a_n}$を求めよ。ただし$\displaystyle\lim_{n \to \infty} \frac{\log n}{n}=\lim_{n \to \infty} \frac{\log(n+1)}{n}=0$を証明無しで用いても良い。

解答形式

(4)の答えを半角数字またはTeXで入力してください。
(1)~(3)についてはお手持ちの紙に解答し、解説を確認ください。

三角関数が入った漸化式

kiwi1729 自動ジャッジ 難易度:
3月前

5

問題文

数列$\ a_{n}$は以下のように定義されます.
$$a_{1}=1,a_{n+1}=2a_{n}+2\cos\frac{n\pi}{3}$$
このとき,$$\displaystyle\sum_{k=1}^{50000}a_{k}$$の正の約数の個数を解答してください.

解答形式

整数で解答してください.

2022文化祭

Kta 自動ジャッジ 難易度:
13月前

3

問題文

三角形 $ABC$ について,辺 $BC,CA,AB$ の中点をそれぞれ $D,E,F$ とし,三角形 $ABC, DEF$ の垂心をそれぞれ $H_1, H_2$ とすると,以下が成立しました.$$H_1H_2=3\sqrt{3},\quad DH_2=1,\quad \angle{H_1H_2D}=150^{\circ}$$このとき,三角形 $ABC$ の面積の $2$ 乗の値を求めてください.

解答形式

半角数字で入力してください。

漸化式②

Americium243 自動ジャッジ 難易度:
3月前

3

問題文

正の整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$
を満たしている。
${|a_{2025}|}$ の正の約数の個数を求めよ。

解答形式

整数で入力してください

点つなぎ

yura 自動ジャッジ 難易度:
3月前

3

問題文

ある円周上に点をランダムに無限個打ち,打った順に $A_1,A_2,A_3,\cdots$ とします.また,以下のルールに従い点つなぎを行います.

ルール
  • ペン先を $A_1$ に置く.
  • 現在のペン先が $A_i$ にあるとき,$A_i$ と $A_{i+1}$ を線分で結ぶ.このとき,ペン先は $A_{i+1}$ へと移動する.
  • 途中で他の線分と端点を除いて交わってしまう場合,現在の線分を消して点つなぎを終了する.

引くことの出来る線分の本数の期待値を $E$,分散を $V$ としたとき $V=f(E)$ となる整数係数多項式 $f$ がただ $1$ つ存在するので,$|f(1685)|$ の値を解答してください.

解答形式

半角数字で解答してください

即興幾何

katsuo_temple 自動ジャッジ 難易度:
10月前

5

問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,$AD,BC$の中点をそれぞれ$M,N$とする.$A N$と$EF$の交点を$P$とし,$DP$と$MN$の交点を$Q$,三角形$ABC$の外接円と$AQ$が再び交わる点を$R$としたとき,$$AN=10 AB=9 NR=3$$が成立した.このとき,$AC²$の値を解答してください.

解答形式

半角で解答してください.

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
2年前

6

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.