平方数と素数に挟まれた数

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2026年1月7日23:24 正解数: 3 / 解答数: 4 (正答率: 75%) ギブアップ不可
整数問題 西暦問題 2026年問題

全 4 件

回答日時 問題 解答者 結果
2026年1月8日16:58 平方数と素数に挟まれた数 puratoku
正解
2026年1月8日16:57 平方数と素数に挟まれた数 puratoku
不正解
2026年1月8日7:02 平方数と素数に挟まれた数 roku_omc
正解
2026年1月8日0:18 平方数と素数に挟まれた数 Weskdohn
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

6時間前

2

${}$ 西暦2026年問題第8弾です。$2026$を$2^{26}$とする強引な西暦問題となりました。ついでに書くと、どこかに類題がありそうで、その点でも恐れています。皆さんはそんな僕の恐れなど気にせずにお楽しみください。

解答形式

${}$ 解答は1行目に$p_3$の値を、2行目に$p_4$の値を、それぞれ半角で入力してください。「$p_3=$」「$p_4=$」といった記載は不要です。
(例)$p_3=$108、$p_4=$2026 → 《1行目》$\color{blue}{108}$、《2行目》$\color{blue}{2026}$

連立方程式 応用

reito 自動ジャッジ 難易度:
4日前

2

問題文

ab-3c-d^2 = e …①
3cd+d^2+e^2 = abd …②
a+8+2d = b …③
a+11+e = b+3 …④
を全て満たす自然数の組(a,b,c,d,e)のうち、a+b+c+d+eが最小となるようなものを求めよ。

解答形式

a+b+c+d+e の値を半角数字で

余りを求める

mathken 自動ジャッジ 難易度:
12日前

7

問題文

$86^{48}-64$ を $864$ で割った余りを求めよ。

没問1

mani 自動ジャッジ 難易度:
5日前

4

以下の式を満たす正整数の組 $(x,y,z)$ すべてについて,$xyz$ の総和を求めてください.
$$x^3+y^3+z^3+\dfrac{xyz}{16}=2026$$

OMCE017E 原案(300くらい)

Nyarutann 自動ジャッジ 難易度:
4月前

5

問題文

$i=1, 2, \ldots, 999$ に対して,数 $i$ が書かれたカードがそれぞれ $1001$ 枚あり,同じ数が書かれたカードは区別しないものとします.これらを左右 $1$ 列に並べる方法であって,次の条件を満たすカード $X$ がちょうど $1$ 枚あるようなものが $N$ 通りあるものとします.

  • カード $X$ は一番右のカードではない

  • カード $X$ に書かれた数は,カード $X$ の右隣のカードに書かれた数より大きい

$N$ を $997$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

200C

Nyarutann 自動ジャッジ 難易度:
5月前

5

問題文

$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.

  • $3$ 項の順番を並び替えることで等差数列になる.

例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

23日前

4

問題文

以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします.
$$x^3-2^{2025}x^2+24x-2^{2023}=0$$

このとき,以下の値は整数になるので,その正の約数の個数を求めてください.
$$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの31番の問題と同じです.

(A)

sembri 自動ジャッジ 難易度:
13日前

5

問題文

正整数$N$を$7,10,13,16,19$で割った余りがそれぞれ$2,3,4,5,6$であるとします。このとき$N$を$1729$で割った余りを求めてください。

整数問題

smasher 自動ジャッジ 難易度:
3月前

8

問題文

$x,y$を整数、$p$を素数とする。
$x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。

解答形式

$x+y+p$の値としてありうる値の総和を半角数字で入力してください。

没問

poino 自動ジャッジ 難易度:
15月前

5

問題文

$n$ 以下の正整数のうち $n$ と互いに素なものの個数を表す $φ(n)$ を $a$ 回合成した関数を $φ^a(n)$ と書くとき、$φ^a(n)=1$ を満たす最小の $a$ が $8$ であるような $n$ の最小値と最大値のを解答してください。

解答形式

半角数字で入力してください。

58日前

7

問題文

次を満たす整数係数多項式の組 $(f,g)$ はいくつありますか?
$$f(g(x))=x^6+1 0≦f(0),g(0)≦2025$$

解答形式

条件を満たす組の個数を半角整数で $1$ 行目に入力してください。

まわりまわる面積比較

kusu394 自動ジャッジ 難易度:
20月前

4

問題文

四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします.
$$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
若干日本語がおかしかったため編集しました. 解答には影響はないと思われます.
一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.