面積の確率

obenben 自動ジャッジ 難易度: 数学 > 高校数学
2026年2月19日20:03 正解数: 0 / 解答数: 1 ギブアップ数: 0
確率 面積 正十二角形

全 1 件

回答日時 問題 解答者 結果
2026年2月19日23:20 面積の確率 MACHICO
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

塗りつぶされた面積

smasher 自動ジャッジ 難易度:
1日前

2

問題文

下図の塗りつぶされた部分の面積を求めよ。

条件
・四角形$ABCD$は一辺の長さが$3$の正方形
・円はどちらも正方形の$2$辺に接していて、その半径は$1$

解答形式

答えは正整数$a,c$と平方因子を持たない正整数$b$および互いに素な正整数$d,e$を用いて$\dfrac{π}{a}+\dfrac{\sqrt{b}}{c}-\dfrac{d}{e}$と表されるので、$a+b+c+d+e$の値を半角数字で入力してください。

階乗を含む整数問題

Auro 自動ジャッジ 難易度:
3月前

1

問題文

$n, k$ を正の整数とし,

$$
A_n = n! + k^2 + 2k + 2
$$

とする。$1 \le k \le 100$ の範囲で,次の (*) を満たす $k$ を全て求めよ。

(*) $A_n$ が平方数となる $n$ が少なくとも$1$つ存在する。

解答形式

$k$の値を半角数字で、小さい順に$1$行目から各行左詰めで入力してください。
例)
1
3
5


問題文

二等辺三角形ABCがあり、AB=AC=xcmである。また、頂角は150°である。下の式が二等辺三角形ABCの面積の値と等しくなった時、xの数値を求めなさい。(・は掛け算の×を表しています)

$$
\frac{x^4-10x^2+9}{(x+1)(x+3)(x-3)} + \sqrt{25+4\sqrt{6}} \cdot \sqrt{25-4\sqrt{6}} + \frac{(x+2)^3-(x-2)^3}{12x} + \frac{\sqrt{2}}{\sqrt{3}+\sqrt{1}} + \frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}} + \frac{\sqrt{2}}{\sqrt{7}+\sqrt{5}} - \frac{\sqrt{14}}{\sqrt{2}} + 19
$$

解答形式

x=は必要ありません。数値のみを記入してください
(例) 810

灘の因数分解(激ムズ)

obenben 自動ジャッジ 難易度:
12時間前

2

問題文

$$
次の式を因数分解せよ。
$$x^4 + 2x^3y + 3x^2y^2 + 2xy^3 + y^4 + x^2 + xy + y^2 - 12

解答形式

正解は(◯+▲)(◯+◻︎)であり、◯にはx、yを用いた式、▲、◻︎には整数が入ります。なので▲+◻︎の値を答えなさい。(数字のみ)
なお、値が負の数になった場合、-の記号はカタカナで答えなさい。
(例)
(◯+2)(◯+1)→3
(◯-1)(◯+3)→2
(◯-2)(◯-3)→マイナス5

二重根号を外したい

smasher 自動ジャッジ 難易度:
34日前

26

問題文

同様に確からしいサイコロを$2$回振り、出た目を順に$a,b$とします。
$\sqrt{a-\sqrt{b}}$の二重根号が外せる確率を求めてください。

解答形式

二重根号を外せる確率は互いに素な整数$p,q$を用いて$\dfrac{p}{q}$と表されるので、$p+q$の値を半角数字で入力してください。

解答に誤りがありました。(修正済み)大変申し訳ございません。

点つなぎ

yura 自動ジャッジ 難易度:
3月前

3

問題文

ある円周上に点をランダムに無限個打ち,打った順に $A_1,A_2,A_3,\cdots$ とします.また,以下のルールに従い点つなぎを行います.

ルール
  • ペン先を $A_1$ に置く.
  • 現在のペン先が $A_i$ にあるとき,$A_i$ と $A_{i+1}$ を線分で結ぶ.このとき,ペン先は $A_{i+1}$ へと移動する.
  • 途中で他の線分と端点を除いて交わってしまう場合,現在の線分を消して点つなぎを終了する.

引くことの出来る線分の本数の期待値を $E$,分散を $V$ としたとき $V=f(E)$ となる整数係数多項式 $f$ がただ $1$ つ存在するので,$|f(1685)|$ の値を解答してください.

解答形式

半角数字で解答してください

極限

sulippa 自動ジャッジ 難易度:
9月前

7

問題文

n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。

量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。

次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$

ただし、オイラー・マスケロー二定数を $γ$ とする。

解答形式

半角で

2022文化祭

Kta 自動ジャッジ 難易度:
13月前

3

問題文

三角形 $ABC$ について,辺 $BC,CA,AB$ の中点をそれぞれ $D,E,F$ とし,三角形 $ABC, DEF$ の垂心をそれぞれ $H_1, H_2$ とすると,以下が成立しました.$$H_1H_2=3\sqrt{3},\quad DH_2=1,\quad \angle{H_1H_2D}=150^{\circ}$$このとき,三角形 $ABC$ の面積の $2$ 乗の値を求めてください.

解答形式

半角数字で入力してください。

漸化式②

Americium243 自動ジャッジ 難易度:
3月前

3

問題文

正の整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$
を満たしている。
${|a_{2025}|}$ の正の約数の個数を求めよ。

解答形式

整数で入力してください


問題文

以下の漸化式で与えられる数列${a_n},{b_n}$を考える。ただし、$n$は非負整数であるとし、${a_n}$の初項は$a_0=1$とする。
$\displaystyle a_{n+1}=\sum_{k=0}^na_ka_{n-k} , \displaystyle b_{n+1}=\sum_{k=0}^n (k+1)a_ka_{n-k}$
(1)$b_n$を$a_n$で表わせ。
(2)$\displaystyle a_{n+1}=\frac{2(2n+1)}{n+2}a_n$を証明せよ。
(3)それぞれの数列の一般項$a_n,b_n$を求めよ。
(4)$\displaystyle \lim_{n \to \infty} \sqrt[n]{a_n}$を求めよ。ただし$\displaystyle\lim_{n \to \infty} \frac{\log n}{n}=\lim_{n \to \infty} \frac{\log(n+1)}{n}=0$を証明無しで用いても良い。

解答形式

(4)の答えを半角数字またはTeXで入力してください。
(1)~(3)についてはお手持ちの紙に解答し、解説を確認ください。

三角関数が入った漸化式

kiwi1729 自動ジャッジ 難易度:
3月前

5

問題文

数列$\ a_{n}$は以下のように定義されます.
$$a_{1}=1,a_{n+1}=2a_{n}+2\cos\frac{n\pi}{3}$$
このとき,$$\displaystyle\sum_{k=1}^{50000}a_{k}$$の正の約数の個数を解答してください.

解答形式

整数で解答してください.

5次方程式

Hensachi50 採点者ジャッジ 難易度:
10月前

3

問題文

次の方程式を解いて、$x$の値をすべて求めてください。
$$x^5+2x^4+3x^3+3x^2+2x+1=0$$

解答形式

$a,b,c,d,e$のように解答してください。($π$はpiで$i$(虚数単位)はiで分数は$\frac{1}{2}$の場合は1/2のように解答してください。)