[C] からくり箱

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年12月5日18:00 正解数: 15 / 解答数: 17 (正答率: 88.2%) ギブアップ不可
関数方程式 まそらた杯
この問題はコンテスト「第2回まそらた杯」の問題です。

問題文

正の実数に対して定義され正の実数値をとる関数 $f$ が、任意の正の実数 $x,y$ に対して

$$
f\left(\frac{x+y+1}{xy}\right)=\frac{f(x)f(y)}{x+y+1}
$$

を満たすとき

$$
f\left(\frac{11}{21}\right) = \frac{\fbox{アイウエ}}{\fbox{オカキ}}
$$

である。

解答形式

ア〜キには、0から9までの数字が入る。
文字列「アイウエオカキ」を半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

4年前

28

問題文

(1)$\displaystyle \tan\theta=\frac{1}{4}$ のとき、$\displaystyle \tan2\theta=\frac{\fbox{ア}}{\fbox{イウ}}$ である。

(2)連立方程式

$$
\begin{cases}
x_1=x_2(2+x_1x_2) \\
x_2=x_3(2+x_2x_3) \\
x_3=x_4(2+x_3x_4) \\
x_4=x_1(2+x_4x_1)
\end{cases}
$$

を満たす実数 $(x_1,x_2,x_3,x_4)$ の組は全部で $\fbox{エオ}$ 個あり、そのうち $\tan20^\circ < x_1 < \tan80^\circ$ を満たすような組は $\fbox{カ}$ 個ある。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカ」を半角で2行目に入力せよ。


問題文

以下の文がそれぞれ正しくなるように、空欄に $0$ から $9$ までの数字を埋めよ。ただし、同じ文字の空欄には同じ文字が入る。

(1)数列 $\fbox{ア}, \fbox{イ}, \fbox{ウ}, \fbox{エ},\fbox{オ}$ には、
$0$ が $\fbox{ア}$ 回、$1$ が $\fbox{イ}$ 回、$2$ が $\fbox{ウ}$ 回、$3$ が $\fbox{エ}$ 回、$4$ が $\fbox{オ}$ 回、それぞれ現れる。

(2)数列 $\fbox{カ}, \fbox{キ}, \fbox{ク}, \fbox{ケ}, \fbox{コ}, \fbox{サ}, \fbox{シ}, \fbox{ス}, \fbox{セ}, \fbox{ソ}$ には、
$0$ が $\fbox{カ}$ 回、$1$ が $\fbox{キ}$ 回、$2$ が $\fbox{ク}$ 回、$3$ が $\fbox{ケ}$ 回、$4$ が $\fbox{コ}$ 回、
$5$ が $\fbox{サ}$ 回、$6$ が $\fbox{シ}$ 回、$7$ が $\fbox{ス}$ 回、$8$ が $\fbox{セ}$ 回、$9$ が $\fbox{ソ}$ 回、それぞれ現れる。

解答形式

ア〜ソには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエオ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「カキクケコサシスセソ」を半角で2行目に入力せよ。

求角問題8

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

2つの正方形が図のように配置されています。緑で示した角の大きさを求めてください。

解答形式

半角数字で解答してください。
ただし、解答は度数法で、「°」や「度」といった単位を付けずに0以上360未満の数を解答してください。

求長問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。

解答形式

半角数字で解答してください。


問題文

$a$ を実数の定数とする。正の実数値をとる関数 $y(x)$ は何回でも微分可能で、

$$
\begin{cases}
2yy''''+(y'')^2=2y'y'''+a & (x \in {\mathbb R})\\
y'(0)=y''(0)=0 \\
y'''(0)=y''''(0)=1
\end{cases}
$$

を満たすとする。$\displaystyle a=\frac{50}{17}$ のとき、($x$ が実数全体を動くときの)$y(x)$ の最小値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエオ}}$ である。

解答形式

ア〜オには、0から9までの数字が入る。
文字列「アイウエオ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

求長問題13

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題18

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

2つの正方形が図のように配置されています。赤い線分の長さが4のとき、2つの正方形の面積の合計を求めてください。

解答形式

半角数字で解答してください。

4年前

28

問題文

$f(x)=-16x^3+24x^2-9x+1$ とおく。以下の問いに答えよ。

⑴ 以下の式が $\theta$ の恒等式になるように空欄を埋めよ。なお、同じ文字の空欄には同じ数が入る。

$$
f\left( \frac{\fbox{ア}+\sin\theta}{\fbox{イ}}\right)=\frac{\fbox{ア}+\sin(\fbox{ウ}\theta)}{\fbox{イ}}
$$

⑵ 次の定積分を求めよ。
$$
\int_ {0.5} ^{0.75} f(f(f(x))) dx = \frac{\fbox{エオカ}}{\fbox{キクケコ}}
$$

解答形式

ア〜コには、0から9までの数字が入る。
⑴の答えとして、文字列「アイウ」をすべて半角で1行目に入力せよ。
⑵の答えとして、文字列「エオカキクケコ」をすべて半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で答えよ。

求値問題

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求長問題12

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。

解答形式

解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。

expもどき

masorata 自動ジャッジ 難易度:
4年前

10

問題文

すべての複素数に対して定義され、複素数の値をとる関数 $f(z)$ は、すべての複素数 $z,w$ について

$$
f(z+w)=f(z)f(w)+zw ...(*)
$$

をみたすとする。以下の問いに答えよ。

⑴ すべての複素数 $z$ について $f(2)f(z)+z = f(1)f(z+1)+1$ が成り立つことを示せ。
⑵ $(*)$ をみたすような $f(z)$ をすべて求めよ。

解答形式

⑵を解答したうえで、以下の空欄ア~エに当てはまる0~9の整数を順に並べて4桁の半角数字「アイウエ」を入力せよ。根号の中身が最小になるように解答せよ。

$|f(5+11i)|$ のとりうる値のうち最大のものは$(アイ)$, 最小のものは$(ウ)\sqrt{(エ)}$ である。

求長問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

円の中の線分が図の条件を満たすとき、円の半径を求めてください。

解答形式

半径$r$は、$r=\dfrac{\sqrt{\fbox{アイ}}}{\fbox ウ}$と表されます。
文字列 アイウ を解答してください。ただし、ア~ウには1桁の非負整数が入ります。