$xy$ 平面上に原点を中心とする単位円 $C$ が存在する。$C$ 上の点 ${\rm A,B}$ は第一象限に存在し,それぞれ $x$ 座標が $\cfrac{1}{4}, \cfrac{3}{4}$ である。また、楕円$D$が存在し、その式は
$$
\frac{x^2}{p}+\frac{y^2}{q} = 1~~~~(p>q>0)
$$
と表される。
ある直線が円 $C$ 上の弧 ${\rm AB}$ のうち短い方(両端を含む)と接していて,なおかつ楕円 $D$ とも接している。この2つの接点の距離が $1$ であるとき、$p$ の最大値を求めよ。
(追記:2020年6月29日1:25 問題の不備を修正いたしました。解答は変わりません。)
解答は,自然数 $a,b$ を用いて
$$
a+\sqrt{b}
$$という形で表される(平方根は最も簡単な形にしてある)。解答欄には,一行目に $a$、2行目に $b$ の値を半角数字で入力せよ。
$n=0, 1,\cdots$ に対して
\begin{equation}
I_n=\int_0^1 \frac{x^n}{\sqrt{1-x^4}}dx
\end{equation}
と定める。この広義積分は収束することが知られている。
任意の $n=0,1,\cdots$ に対して
\begin{equation}
I_{n+\fbox{ア}}=\frac{n+\fbox{イ}}{n+\fbox{ウ}}I_n
\end{equation}が成り立つ(ただし $\fbox{ア}$ は $0$ でない)。これを利用すると
\begin{equation}
\prod_{n=1}^{\infty} \left[1-\frac{4}{(4n-1)^2}\right]=\frac{\fbox{エ}\;\pi^{\fbox{オ}}}{\alpha^{\fbox{カ}}}
\end{equation}が導かれる。ここで $\alpha$ は
\begin{equation}
\alpha=\int_0^{\infty} t^{-3/4}e^{-t}dt=\Gamma\left(\frac{1}{4}\right)
\end{equation}で定義される定数である(この広義積分は収束することが知られている)。
以下の事実は証明なしに用いてよい。
$\fbox{ア}$ 〜 $\fbox{カ}$ には,半角数字 0 - 9
のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{カ}$ に当てはまるものを,改行区切りで入力してください。
$x$ についての2次方程式
$$
3x^2+(5k-4)x+4k = 0
$$が異なる2つの正の実数解 $\alpha,\beta\;(\alpha<\beta)$ を持ち、$\beta$ の小数部分が $\alpha$ である。このとき、$k$ の値を求めよ。
解答は
$$
\frac{N-\sqrt{M}}{L}
$$と表わされる($N,M,L$ は自然数)。分数や平方根は最も簡単な形にしてある。解答欄には $N, M, L$ の値をそれぞれ 1, 2, 3 行目に半角数字で入力せよ。
半円2つが図のように配置されています。
赤い線分と青い線分は長さの比が1:2です。
このとき、Xの角度を求めてください。
半角数字で入力してください。
「度」や「°」は付けないでください。
例:X=57° → 57