公開日時: 2024年4月3日16:52 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$ $ 地理奈ちゃんは,$10$ 面サイコロを $4$ つ持っており,それを $4$ つ全て同時に $1$ 回振ることを考えます.ここでの $10$ 面サイコロは,$1$ 以上 $10$ 以下の整数の目が同様に確からしい確率で $1$ つ出るサイコロとします.
$ $ また,サイコロの出目により,それぞれのサイコロに対して,成功数を以下のように定義します.
$ $ この時,$4$ つのサイコロを振って,その成功数の合計が $0$ 以下になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ を解答してください.
【追記】
難しすぎるという意見をいただいたので難易度を2→3に変更しました。
非負整数を半角で解答してください.
公開日時: 2024年6月9日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
一辺の長さが $4$ の正三角形 $ABC$ について,$BC$ の中点を $M$ とし,線分 $BC$ 上に $BD=1$ なる点 $D$ をとります.$3$ 点 $ABD$ を通る円と$3$ 点 $ACM$ を通る円との交点を $X$ とするとき,$AX$ の長さの $2$ 乗を求めてください.ただし,求める値は,互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ の値を解答してください.
半角数字で解答してください.
公開日時: 2020年12月5日18:00 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。
なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。
正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。
あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。
公開日時: 2024年8月5日10:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形$ABC$の内心を$I$外心を$O$とする.
$∠AIB=145°$のとき$∠AOB$の角度を度数法で解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$ $ 正方形の中を等間隔に区切ってできた $6×6$ のマス目があります.正方形の中心を中心として点対称となるようにマス目を塗ることを考えます.
$ $ 正方形全体で $10$ マスちょうどを塗るとき,マス目の塗られ方は何通りありますか?ただし,反転・回転して一致するものは全て区別します.
非負整数を半角で解答してください.
公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$ $ $1$ を $3$ つ,$2$ を $1$ つ,$7$ を $2$ つを全て使い,それらを並べ替えてできた長さ $6$ の文字列は全部でいくつありますか?
$ $ ただし,同じ文字は区別しません.
非負整数を半角で解答してください.
公開日時: 2025年5月18日22:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$2$ 番目に小さい正の約数と $3$ 番目に小さい正の約数の和が $12$ であるような,正の約数が $3$ つ以上ある正の整数のうち,$100$ 以下のものの総和を求めよ.
公開日時: 2020年9月12日18:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。
解答を半角数字で入力してください。