$\sqrt[10] {10}$ の小数第一位の値を求めよ。 ただし, $\log_{10}{2}=0.3010$ とする。
答えを半角数字で入力してください。
与えられた近似値以外は使ってはいけません。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
三角形の外側に3つの正方形を図のように作りました。橙・緑・紫の線分の長さを3辺の長さとする三角形(赤い三角形)の面積が57のとき、元の三角形(青い三角形)の面積を求めてください。
半角数字で解答してください。
直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。 $BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。
原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。
整数または既約分数で答えてください。 半角で入力してください。
$r$ を正の整数とする。$xyz$ 空間において,原点を中心とする半径 $\sqrt{r}$ の球面を $S_r$ で表すとき,次の問いに答えなさい。
※点 $(x,y,z)$ が格子点であるとは,$x,y,z$ がすべて整数であることをいう。
改行区切りで,1行目に 1. の答えを,2行目に 2. の答えを入力してください。
$a,b,c$がいずれも正の実数であり、$a+b+c=5,abc=1$が成り立つとき、$ab+bc+ca$の最小値を求めよ。
答えは既約分数になります。/を用いて入力してください。 例:$\displaystyle\frac{5}{7}$→5/7
1円, 5円, 10円, 50円, 100円, 500円の硬貨が1枚ずつある。1回目の試行で6枚の硬貨を投げ、表が出た硬貨をもらうことができる。2回目の試行では、残った硬貨を投げ、やはり表が出た硬貨をもらうことができる。もらえる金額が600円以上になったらこの試行は終了するものとする。
(1) 1回目の試行で終わる確率はいくらか。 (2) 2回目の試行で終わる確率はいくらか。
(1)の答えを1行目に、(2)の答えを2行目に既約分数で入れてください。
1/2 3/10
三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。 $$ \frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B} $$
最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。 ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。
おかぴんはチョコレート入りの袋が3袋入った箱を持っていて、これから食べようとしています。 しかし、おかぴんは怠惰なので食べ終わった空の袋を捨てずに、再び箱の中に入れてしまいます。 箱の中から1袋ずつ取り出して、それがチョコレートの入った袋だったなら食べて箱の中に空の袋を戻し、それが空の袋だったなら食べずにそのまま箱の中に戻す、という試行を繰り返します。 チョコレートの入った袋を取り出す確率も空の袋を取り出す確率も同様に確からしいとするとき、箱の中の全てのチョコレートを食べ終えるまでの試行回数の期待値を求めてください。
答えは$\frac{\fboxア}{\fboxイ}$(ただし既約分数)となります。$\fboxア\fboxイ$に入る数字をそれぞれ1,2行目に半角で入力してください。
正七角形2つが図のように配置されています。 赤色の線分の長さが7のとき、青色の線分の長さを求めてください。
$x,y$を整数とする。不定方程式$x^7+17y=3$の解$x$をすべて求めよ。
答えは、$n$を整数とし、 $x=[ab]n+[cd]$ ($a,b,c,d$は一桁の自然数) という形をしています。$a,b,c,d$の値を求め、$abcd$(4桁の自然数)を入力してください。
図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。 このとき、緑色部分(凹四角形)の面積を求めてください。 解答形式に注意!
$答えはA\sqrt{B}の形になります。(A,Bは自然数)$ $A+Bを解答してください。$ $<注意>$ $根号の中が最小となるようにしてください。$ $半角数字で解答してください。$ $例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$
数列 $ \{ a_n \} $ $(n=1,2\dots)$ を、 $$ a_1=2,\ a_2=3,\ a_{n+1} = \max_{1 \leqq k \leqq n} \{ (n-k+1)a_k \}\ (n \geqq 2) $$
で定める。$ \{ a_n \} $ の一般項を求め、さらに $\log_{3}{(a_{6062})}$ の値を求めよ。
$\log_{3}{(a_{6062})}$ はある自然数となるので、その値を半角数字で答えよ。