全 26 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
【補助線主体の図形問題 #109】 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。
${ \def\cm{\thinspace \mathrm{cm}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
図の条件の下で、青で示した角の大きさ $x$ を求めてください。
$x=a$ 度($0\leq a\lt 180$)です。整数 $a$ の値を半角数字で解答してください。
下図で、六角形ABCDEFは正六角形、点L,H,G,I,K,Jは六角形ABCDEFの辺の中点です。赤い部分の面積が72㎠のとき、青い部分の面積は何㎠ですか。
半角数字で入力してください。 例)10
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 誤りがあったため、解答を修正しました。迷惑をおかけして申し訳ありません。
実数$x$の方程式$3\sqrt{x+1-4\sqrt{x-3}}=x-1$を解け。
半角数字、またはTexで解答してください。$x=$は書かなくて良いです。
【補助線主体の図形問題 #070】 今週は、僕の出題では珍しく軌跡の問題です。初等幾何によらない解法も存在しますが、いつも通り補助線でも突破可能です。難易度評価は補助線による解法を想定しており、それ以外の解法が思いついた方にはぐっと簡単に見えるかもしれません。お好みの解法でお楽しみください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
円の一部を折り返した図形です。赤、青の線分の長さがそれぞれ 7,3のとき、円の半径を求めてください。(解答形式に注意!) 折り返した円弧部分は元の円の中心を通ります。 Mは弧ABの中点です。 2020/07/04/13:29 解答に誤りがあったため更新しました。
$自然数A,B,Cを用いてradius=\frac{A\sqrt{B}}{C} と表せます。 A+B+Cを解答してください。$ $A,Cは既約分数の形に、Bは根号の中が最小となるようにしてください。$ $例: \frac{4\sqrt{18}}{6}=2\sqrt{2}→A=2,B=2,C=1→5と解答$
【補助線主体の図形問題 #009】 今日の問題はとびっきりシンプルにしてみました。補助線でガリガリ計算することもできますが、ある発想があれば暗算一発で解くことも可能です。いろいろな可能性を探ってみてください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
図の条件の下で、ピンクで示した線分の長さを求めてください。
互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。
$2^{p+q}-p^{q}=13$を満たす素数$\left(p,q\right)$をすべて求めよ.
$p^{2}+q^{2}$の値を,半角数字で解答してください.答えが複数ある場合は,値の小さい順に,1行に1つずつ書いてください.
(例) 解答が$\left(p,q\right)=\left(2,7\right),\left(5,11\right)$のときは,以下のように解答します.
53 146
【補助線主体の図形問題 #082】 今週の図形問題です。今回は解法の多そうな問題を用意してみました。補助線を頼りに思い思いの解法を楽しんでもらえたら嬉しいです。
図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。
半角数字で解答してください。
長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。
解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。