余り

ryno 自動ジャッジ 難易度: 数学 > 高校数学
2022年10月15日17:45 正解数: 17 / 解答数: 24 (正答率: 70.8%) ギブアップ不可
mod 余り

全 24 件

回答日時 問題 解答者 結果
2024年5月10日13:40 余り sha256
不正解 (0/1)
2024年3月30日10:53 余り D-butu
正解
2023年12月6日20:55 余り nmoon
正解
2023年11月20日7:33 余り MARTH
正解
2023年11月20日7:32 余り MARTH
不正解 (0/1)
2023年10月27日12:00 余り Furina
正解
2023年10月17日10:44 余り mochimochi
正解
2023年10月12日23:08 余り 326_math
正解
2023年7月13日17:26 余り seven_sevens
正解
2023年4月29日20:27 余り huronntogarasuugaku
正解
2023年4月23日19:12 余り ゲスト
正解
2023年4月23日19:08 余り ゲスト
不正解 (0/1)
2023年2月22日20:20 余り ゲスト
正解
2023年1月3日21:47 余り huronntogarasuugaku
不正解 (0/1)
2023年1月3日21:47 余り huronntogarasuugaku
不正解 (0/1)
2022年12月9日16:51 余り tsx
正解
2022年12月7日1:16 余り ゲスト
不正解 (0/1)
2022年12月2日13:26 余り ゲスト
正解
2022年11月23日13:54 余り img4213_jpg
正解
2022年10月21日17:23 余り fff
正解
2022年10月17日9:54 余り nzm
正解
2022年10月17日9:50 余り nzm
不正解 (0/1)
2022年10月15日22:45 余り hkd585
正解
2022年10月15日19:20 余り naoperc
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

正六角形の頂点と中点を結ぶ

Fuji495616 自動ジャッジ 難易度:
5月前

12

問題文

下図で、六角形ABCDEFは正六角形、点L,H,G,I,K,Jは六角形ABCDEFの辺の中点です。赤い部分の面積が72㎠のとき、青い部分の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10

ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
誤りがあったため、解答を修正しました。迷惑をおかけして申し訳ありません。

20月前

21

問題文

図の条件の下で、青で示した角の大きさ $x$ を求めてください。

解答形式

$x=a$ 度($0\leq a\lt 180$)です。整数 $a$ の値を半角数字で解答してください。

11月前

16

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

22月前

14

問題文

図の条件の下で、ピンクで示した線分の長さを求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。

22月前

13

【補助線主体の図形問題 #070】
 今週は、僕の出題では珍しく軌跡の問題です。初等幾何によらない解法も存在しますが、いつも通り補助線でも突破可能です。難易度評価は補助線による解法を想定しており、それ以外の解法が思いついた方にはぐっと簡単に見えるかもしれません。お好みの解法でお楽しみください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求長問題

Kinmokusei 自動ジャッジ 難易度:
4年前

23

問題文

円の一部を折り返した図形です。赤、青の線分の長さがそれぞれ
7,3のとき、円の半径を求めてください。(解答形式に注意!)
折り返した円弧部分は元の円の中心を通ります。
Mは弧ABの中点です。
2020/07/04/13:29 解答に誤りがあったため更新しました。

解答形式

$自然数A,B,Cを用いてradius=\frac{A\sqrt{B}}{C} と表せます。
A+B+Cを解答してください。$
$A,Cは既約分数の形に、Bは根号の中が最小となるようにしてください。$
$例: \frac{4\sqrt{18}}{6}=2\sqrt{2}→A=2,B=2,C=1→5と解答$

素数の方程式

hkd585 自動ジャッジ 難易度:
20月前

14

問題文

$2^{p+q}-p^{q}=13$を満たす素数$\left(p,q\right)$をすべて求めよ.

解答形式

$p^{2}+q^{2}$の値を,半角数字で解答してください.答えが複数ある場合は,値の小さい順に,1行に1つずつ書いてください.

(例)
解答が$\left(p,q\right)=\left(2,7\right),\left(5,11\right)$のときは,以下のように解答します.

53
146

二重根号

zyogamaya 自動ジャッジ 難易度:
3年前

14

問題文

実数$x$の方程式$3\sqrt{x+1-4\sqrt{x-3}}=x-1$を解け。

解答形式

半角数字、またはTexで解答してください。$x=$は書かなくて良いです。

3年前

16

【補助線主体の図形問題 #009】
 今日の問題はとびっきりシンプルにしてみました。補助線でガリガリ計算することもできますが、ある発想があれば暗算一発で解くことも可能です。いろいろな可能性を探ってみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. この問題におけるキーワードをぼんやりと
  3. ヒント2の内容を具体的に
  4. 補助線と全体の方針をやや具体的に
20月前

12

問題文

図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。

解答形式

半角数字で解答してください。


【補助線主体の図形問題 #082】
 今週の図形問題です。今回は解法の多そうな問題を用意してみました。補助線を頼りに思い思いの解法を楽しんでもらえたら嬉しいです。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求長問題16

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

2021.3.21 22:28 問題タイトルを修正しました。(解答に影響はありません)
正三角形の内接円と外接円があります。図のように線分の長さが与えられたとき、正三角形の一辺の長さを求めてください。

解答形式

答えは$\fbox ア\sqrt{\fbox イ}$となります。文字列 アイ を解答してください。
ただし、$\fbox ア,\fbox イ$には一桁の自然数が入ります。また、根号の中身が平方数の倍数にならないように解答してください。