三角関数の計算⑵

hkd585 自動ジャッジ 難易度: 数学 > 高校数学
2022年11月14日17:53 正解数: 5 / 解答数: 5 (正答率: 100%) ギブアップ数: 0
数列 三角関数

解説

解答は,$\boldsymbol{-4046}$
ここでは一般化して考える.

$\cos\theta=t$ とおく.まず,3倍角,5倍角の公式より,
  $\cos3\theta=4t^{3}-3t$ …①
  $\cos5\theta=16t^{5}-20t^{3}+5t$ …②
が成り立つ.また,$n$ を自然数とするとき,積和公式を利用すると,
  $\cos\left(2n+5\right)\theta$
 $=\cos\{\left(2n+3\right)+2\}\theta$
 $=\cos\left(2n+3\right)\theta\cos2\theta-\sin\left(2n+3\right)\theta\sin2\theta$
 $=\left(2t^{2}-1\right)\cos\left(2n+3\right)\theta-\dfrac{1}{2}\{\cos\left(2n+1\right)\theta-\cos\left(2n+5\right)\theta\}$
となり,移項して整理することで
  $\cos\left(2n+5\right)\theta=2\left(2t^{2}-1\right)\cos\left(2n+3\right)\theta-\cos\left(2n+1\right)\theta$ …③
を得る.
 さて,任意の $n$ について,③が $t$ の整式であることを,数学的帰納法で示す.まず $n=1$ のとき,①,②より主張は正しい.これと②より,$n=2$ のときも主張は正しい.また,$n=k,k+1(k\geqq1)$ について③が $t$ の整式であるとすると,$n=k+2$ についても③は $t$ の整式である.よって,示せた.
 ここに,③ $=T(n)$ とし,$T(n)$ における $t$ の項の係数を $a_{n}$ とおく.このとき,①より $a_{1}=-3$,②より $a_{2}=5$,③より
  $a_{n+2}=-2a_{n+1}-a_{n}$
をそれぞれ得る.ここに,方程式 $x^{2}+2x+1=0$ は重解 $-1$ をもつため,
  $a_{n+2}+a_{n+1}=-\left(a_{n+1}+a_{n}\right)$
$\therefore a_{n+1}+a_{n}=\left(-1\right)^{n-1}\left(a_{2}+a_{1}\right)=2\cdot\left(-1\right)^{n-1}$
両辺を $\left(-1\right)^{n+1}$ で割って移項することにより,
  $\dfrac{a_{n+1}}{\left(-1\right)^{n+1}}=\dfrac{a_{n}}{\left(-1\right)^{n}}+2$
$\therefore \dfrac{a_{n}}{\left(-1\right)^{n}}=\dfrac{a_{1}}{\left(-1\right)^{1}}+\sum_{k=1}^{n-1}2=3+2\left(n-1\right)$
$\therefore a_{n}=\left(-1\right)^{n}\left(2n+1\right)$ …④
また,$T(n)$ における定数項の係数を $b_{n}$ とおくと,①より $b_{1}=0$,②より $b_{2}=0$,③より $b_{n+2}=-2b_{n+1}-b_{n}$ をそれぞれ得るから,$b_{n}=0$ となる.
 次に,方程式 $\cos\left(2n+1\right)\theta=\dfrac{1}{2}$ …⑤ を考える.
 まず,自然数 $i$ に対し,$p_{i}=\dfrac{6i-5}{3\left(2n+1\right)}\pi$ とおく.このとき,任意の $i$ に対し,$p_{i}$ は⑤を満たす.
 ここに,任意の $2n+1$ 以下の異なる自然数 $i_{1},i_{2}$ について,$\cos p_{i_{1}}\neq\cos p_{i_{2}}$ が成り立つことを示す.
 $\cos p_{i_{1}}=\cos p_{i_{2}}$ なる $2n+1$ 以下の異なる自然数 $i_{1},i_{2}$ が存在すると仮定する.$i_{1}<i_{2}$ として一般性を失わない.このとき,
 $0<p_{i_{2}}-p_{i_{1}}<p_{2n+1}=\dfrac{12n+1}{3\left(2n+1\right)}\pi<\dfrac{12n+6}{3\left(2n+1\right)}\pi=2\pi$
より,
  $p_{i_{1}}+p_{i_{2}}=2\pi$
$\Leftrightarrow\dfrac{6i_{1}-5}{3\left(2n+1\right)}+\dfrac{6i_{2}-5}{3\left(2n+1\right)}=2$
$\Leftrightarrow6\left(i_{1}+i_{2}\right)-10=6\left(2n+1\right)$
$\Leftrightarrow3\left(i_{1}+i_{2}-2n-1\right)=5$
となるが,$3,5$ は互いに素な自然数であり,かつ $i_{1}+i_{2}-2n-1$ は整数であるから,$3\left(i_{1}+i_{2}-2n-1\right)\neq5$ となり矛盾する.したがって,任意の $2n+1$ 以下の異なる自然数 $i_{1},i_{2}$ について,$\cos p_{i_{1}}\neq\cos p_{i_{2}}$ が成り立つことが示された.
 さて,⑤は $T(n)=\dfrac{1}{2}$ …⑥ と同値である.
 ここで,$T(n)$ の次数を $c_{n}$ とすると,$c_{n}=2n+1$ であることを示す.
 ③より,$c_{n+2}=\max\{2+c_{n+1},c_{n}\}$ …⑦ である.ここに,次の【補題】を示す.
【補題】すべての自然数 $n$ に対し,$c_{n}<2+c_{n+1}$
【証明】数学的帰納法で示す.まず,①,②より,$n=1$ においては成り立つ.次に,$n=k(k\geqq1)$ で成り立つとすると,⑦より $c_{k+2}=2+c_{k+1}>c_{k+1}$ すなわち $c_{k+1}<c_{k+2}+2$ だから,$n=k+1$ でも成り立つ.よって,補題は示された.$\blacksquare$
 補題と⑦より,任意の自然数 $n$ に対し,$c_{n+1}=c_{n}+2$ である.したがって,①より $c_{1}=3$ だから,$c_{n}=3+2\left(n-1\right)=2n+1$.よって,示せた.
 これより,⑥は $t$ の $2n+1$ 次方程式である.このとき,$2n+1$ 次方程式の実数解の個数は高々 $2n+1$ 個であり,$\cos p_{1},\cos p_{2},...\cos p_{2n+1}$ はすべて異なる実数だから,これらは⑥のすべての解である.したがって,$T(n)$ の $t^{2n+1}$ の項の係数を $d_{n}$ とすると,解と係数の関係により,
  $\sum_{i=1}^{2n+1}\sec\dfrac{6i-5}{3\left(2n+1\right)}\pi$
 $=\sum_{i=1}^{2n+1}\dfrac{1}{\cos\dfrac{6i-5}{3\left(2n+1\right)}\pi}$
 $=\sum_{i=1}^{2n+1}\dfrac{1}{\cos p_{i}}$
 $=\dfrac{\dfrac{\left(-1\right)^{2n}a_{n}}{d_{n}}}{\dfrac{\left(-1\right)^{2n+1}\left(b_{n}-\dfrac{1}{2}\right)}{d_{n}}}$
 $=2\left(-1\right)^{n}\left(2n+1\right)$

$n=1011,i=k$ の場合を考えると,
  $\sum_{k=1}^{2023}\sec\dfrac{6k-5}{6069}\pi$
 $=2\cdot\left(-1\right)^{1011}\cdot2023$
 $=-4046 \square$

※本問はチェビシェフの多項式を題材にしている.$\cos k\theta$ の $k$ が奇数でなくても,$t$ の多項式で表すことができ,次数は $k$ である.


おすすめ問題

この問題を解いた人はこんな問題も解いています

三角関数の計算

hkd585 自動ジャッジ 難易度:
2年前

5

問題文

$\dfrac{1}{\cos\dfrac{\pi}{9}}+\dfrac{1}{\cos\dfrac{5}{9}\pi}+\dfrac{1}{\cos\dfrac{7}{9}\pi}=-\dfrac{a}{b}$ ( $a,b$ は互いに素な自然数)である.

$a+b$ の値を求めよ.

解答形式

半角数字で解答してください。

簡単です.教科書にもありそうなつまらない問題ですが,一応2通りの解法を用意しているので,考えていただけたら幸いです.

極限

sulippa 自動ジャッジ 難易度:
5月前

7

問題文

n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。

量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。

次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$

ただし、オイラー・マスケロー二定数を $γ$ とする。

解答形式

半角で

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
20月前

6

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.

求長問題20

Kinmokusei 自動ジャッジ 難易度:
4年前

4

問題文

半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。

※平行四辺形の一辺と半円は接する。

解答形式

$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。

345

hkd585 自動ジャッジ 難易度:
2年前

4

問題文


$AB=AC=3$ なる $\triangle ABC$ がある.辺 $BC$ の $C$ 側の延長上に,$AD=5$ なる点 $D$ をとる.$\triangle ABD$ の外接円において,$B$ を含まない弧 $AD$ 上に,$DE=4$ なる点 $E$ をとる.直線 $CE$ と $\triangle ABD$ の外接円との交点のうち,$E$ でないものを $F$ としたら,$EF=\dfrac{48}{\sqrt{91}}$ となった.このとき,
$$
BF=\dfrac{a}{b}
$$
である.ただし,$a,b$ は互いに素な自然数である.

$\boldsymbol{\underline{a^{2}+b^{2}}}$ の値を求めよ.

解答形式

半角数字で解答してください.

ネタ

yudukikun5120 自動ジャッジ 難易度:
3年前

6

$\vec{x}=(1,\ p^{ \frac{1}{p}} )$ なるベクトル $\vec{x}$ の $L^{p \to +0}$ ノルムの値を求めよ.


次の式を因数分解しなさい

$2(x-y)^2-xy(x^2+2xy+y^2-3)+(2x+2y)^2-(x+y)^2+xy[(x+y)(x-y)+2y(x+y)+5]$

解答形式

半角で解答のみを記入すること

降べきの順で記入すこと

同じ項の中にx,yが同時にある場合、xを先に記入すること

指数の表記は ^n の形で解答すること

括弧の外にある係数は左側に記入すること

括弧内の項は、文字 数 の順に記入すること

整角問題2

hkd585 自動ジャッジ 難易度:
3年前

24

問題文

凸四角形$ABCD$の対角線$AC$上に点$E$があり,$\angle BAC=30^\circ$,$\angle ABE=110^\circ$,$\angle CBE=20^\circ$,$\angle DAC=10^\circ$,$\angle ADE=10^\circ$がそれぞれ成り立っている.このとき,$\angle CDE$の大きさを度数法で表すと,$x^\circ$となる.

$x$に当てはまる数を求めよ.

※3通りの解法を用意しています.難しくはないので,いろんな方向からアプローチしてみてください.

解答形式

解答のみを,半角数字で答えてください.

ハート型の詰め込み

tb_lb 自動ジャッジ 難易度:
3年前

17

【補助線主体の図形問題 #046】
 バレンタイン直前なのを意識してこんな図形問題を用意してみました。イベント便乗の色物問題ですが、方針次第では暗算で処理できるのはいつも通りです。補助線と共に存分にお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求値問題7

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

(2021.3.13 15:56 追記) 解答に誤りがあったため修正しました。

次の不等式を満たす最大の自然数$n$を求めてください。
$$
2^{n+1}-10\sum_{k=1}^n \lfloor \frac{2^{k-1}}{5} \rfloor \le 20210220
$$ただし、$\lfloor x\rfloor$は$x$を超えない最大の整数を表します。

解答形式

半角数字で解答してください。


◆◆◆◆◆◆◆◆◆

1辺が8cmの正方形ABCDの内部に点E・G・Hがあり、外部に点Fがあります。
BE=AF・CE=DFで、△EGCと△HGBは直角二等辺三角形です。
このとき、△AFHと△EGHの面積の合計は何cm²か、求めてください。





◆◆◆◆◆◆◆◆◆

▸解答形式

単位不要。半角入力。
〔例〕 12cm²と答えたいとき → 「 12

求値問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

5

問題文

$x,y,z$は全て正の実数とします。次式で定義される$f(x,y,z)$について、次の値を求めてください。$$f(x,y,z)=\frac{1+x^2}{y+z}+\frac{1+y^2}{z+x}+\frac{1+z^2}{x+y}$$
$(1)$ $f(x,y,z)$の最小値
$(2)$ $x+y+z=1$のとき、$f(x,y,z)$の最小値
$(3)$ $x^2+y^2+z^2=1$のとき、$f(x,y,z)$の最小値

解答形式

$(1)$の答えは$\fbox ア$、$(2)$の答えは$\fbox イ$、$(3)$の答えは$\fbox ウ\sqrt{\fbox エ}$です。
文字列「アイウエ」を解答してください。