ΠMC002 F

rankturnip 自動ジャッジ 難易度: 数学 > 高校数学
2023年10月27日22:00 正解数: 15 / 解答数: 27 (正答率: 55.6%) ギブアップ不可
この問題はコンテスト「ΠMC002」の問題です。

全 27 件

回答日時 問題 解答者 結果
2023年12月24日23:15 ΠMC002 F nmoon
正解
2023年12月22日14:12 ΠMC002 F nmoon
不正解
2023年11月7日0:49 ΠMC002 F ef
不正解
2023年11月7日0:41 ΠMC002 F ef
不正解
2023年11月1日16:06 ΠMC002 F naoperc
正解
2023年11月1日16:00 ΠMC002 F naoperc
不正解
2023年10月28日19:53 ΠMC002 F choco+
正解
2023年10月28日19:24 ΠMC002 F AGCN
正解
2023年10月28日15:23 ΠMC002 F Butterflv
正解
2023年10月28日15:19 ΠMC002 F Butterflv
不正解
2023年10月28日15:18 ΠMC002 F Butterflv
不正解
2023年10月28日12:33 ΠMC002 F ゲスト
正解
2023年10月28日0:46 ΠMC002 F AGCN
不正解
2023年10月27日23:09 ΠMC002 F cipher
不正解
2023年10月27日23:07 ΠMC002 F false_tto
正解
2023年10月27日23:05 ΠMC002 F cipher
不正解
2023年10月27日23:04 ΠMC002 F cipher
不正解
2023年10月27日23:04 ΠMC002 F bzuL
正解
2023年10月27日23:01 ΠMC002 F simasima
正解
2023年10月27日22:59 ΠMC002 F imabc
正解
2023年10月27日22:58 ΠMC002 F imabc
不正解
2023年10月27日22:53 ΠMC002 F mogura
正解
2023年10月27日22:47 ΠMC002 F P
正解
2023年10月27日22:44 ΠMC002 F natsuneko
正解
2023年10月27日22:30 ΠMC002 F Mr_S
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

ΠMC002 B

rankturnip 自動ジャッジ 難易度:
6月前

44

問題文

$AB=100,AC=200$ なる $\triangle ABC$ において,$A$ 類似中線と $BC$ の交点を $X$ とします.$BX,CX$ がいずれも正整数値であるとき,$AX$ の取り得る正整数値の総和を求めてください.

解答形式

$AX$ の取り得る正整数値の総和を解答してください.

ΠMC002 A

rankturnip 自動ジャッジ 難易度:
6月前

48

問題文

素数 $p$ に対して,$\dfrac{1}{p}$ を小数表記したときに循環する長さを $\Pi(p)$ で表します.正整数 $n$ に対し,$\Pi(p)=n$ なる $p$ のうち最小のものを $M(n)$ とするとき,以下の値を求めてください.ただし,有限小数の場合循環はしないとします.
$$M(1)+M(2)+M(3)+M(4)+M(5)+M(6)$$

解答形式

答えとなる数字のみを解答してください.

ΠMC002 C

rankturnip 採点者ジャッジ 難易度:
6月前

17

問題文

次の条件を満たす正整数 $a,b$ の組を $1$ つ求め,$a,b$ をこの順につなげて解答してください.
・$a>150$
・$a-b=2^7$
・$a$ に登場する数字の集合を $X$,$b$ に登場する数字の集合を $Y$ ,$ab$ に登場する数字の集合を $Z$とすると(例: $a=1233445$ のとき $X={1,2,3,4,5}$),$|X|=3,Y\subset X,|Z|=3,X=Z$ が成立する.

解答形式

条件を満たす正整数 $a,b$ の組を $1$ つ解答してください.

ΠMC002 D

rankturnip 自動ジャッジ 難易度:
6月前

18

問題文

$AB=2,BC=3,CA=4$ なる $\triangle ABC$ について,ナーゲル点を $N$,ジュルゴンヌ点を $G$ とするとき,$NG$ は互いに素な正整数 $a,c$ と平方因子を持たない正整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と書けるので,$a+b+c$ を解答してください.

解答形式

$a+b+c$ を解答してください.

ΠMC002 E

rankturnip 自動ジャッジ 難易度:
6月前

101

問題文

整数 $n$ について,$\dfrac{10^n+11}{3}$ が平方数になるものは存在しますか?存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.

解答形式

存在しないなら $-1$ を解答してください.存在する場合,最小の $n$ を解答してください.ただし答えは非常に大きくなる可能性があるので,$n$ を素数 $998244353$ で割ったあまりを解答してください.

OMC没問2

natsuneko 自動ジャッジ 難易度:
5月前

8

問題文

正整数 $n$ に対して, $n^i \equiv 1 \ (\textrm{mod} \ 25 )$ を満たす最小の正整数 $i$ を $f(n)$ とします. (ただし, このような $i$ が存在しない場合は, $f(n) = 0$ とします.) このとき, $1 \leq n \leq 10000$ の範囲で $f(n)$ が最大値をとるような $n$ の総積を $1000$ で割った余りを解答して下さい.

解答形式

非負整数値を解答して下さい.

自作問題1

mahiro 自動ジャッジ 難易度:
6月前

14

問題文

$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。
このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。

解答形式

半角数字で入力して下さい。

C

nmoon 自動ジャッジ 難易度:
5月前

61

問題文

正整数 $a , b$ の最大公約数を $g(\not=1)$,最小公倍数を $l$ としたとき,以下が成立しました.

$$\dfrac{l - 1}{g - 1} = 100$$

このときの $(a , b)$ の組としてあり得るものを全て求め,$a + b$ の総和を求めてください.

解答形式

正整数で答えて下さい.

OMC不採用問題改題その2

bzuL 自動ジャッジ 難易度:
2月前

12

問題文

$f(n)=n ^{15}+21n^{10}+147n^5+343$ とします.
正整数 $n$ に対して, $f(n)$ が $5^m$ で割り切れるような最大の非負整数 $m$ を $g(n)$ と定めます.$10000$ 以下の正整数 $k $であって $g(n)=k $ を満たす正整数 $n$ が存在するような $k$ の総積を $3343$ で割った余りを解答してください.ただし,$3343$ は素数です.

解答形式

非負整数を解答してください.

SMC100-25

MARTH 自動ジャッジ 難易度:
5月前

18

正整数 $m$ に対して, $m$ の正の約数全ての相加平均を $f(m)$ とします.このとき以下を満たす $m$ の総和を求めてください.
$$f(m)=\frac{m}{2}$$

ΠMC002 G

rankturnip 自動ジャッジ 難易度:
6月前

13

問題文

三角形 $ABC$ について,内心を $I$ とし,$AD=AB=EB$ なる点 $D, E$ をそれぞれ辺 $AC, BC$ 上にとります. いま,円 $CDE$ と $ID, IE$ の交点をそれぞれ $P(\neq D), Q(\neq E)$ とすると,$AP$ は円 $CDE$ に接しました. $AI$ と円 $ABC$ の交点を $M(\neq A)$ とすると,$AI×IM=233, IP=19$ が成立しました. $MQ$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を求めてください.

解答形式

$a+b$ を求めてください.

最小値

sdzzz 自動ジャッジ 難易度:
29日前

8

問題文

$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$

解答形式

求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.