商と余り

miq_39 自動ジャッジ 難易度: 数学 > 中学数学
2023年12月1日22:44 正解数: 6 / 解答数: 10 (正答率: 60%) ギブアップ数: 1
整数 余り ゲーム

全 10 件

回答日時 問題 解答者 結果
2024年1月31日14:07 商と余り seven_sevens
不正解
2023年12月31日0:25 商と余り nmoon
不正解
2023年12月15日17:08 商と余り bzuL
正解
2023年12月15日8:25 商と余り RyAy
正解
2023年12月11日14:32 商と余り ゲスト
正解
2023年12月6日15:42 商と余り naoperc
正解
2023年12月6日14:24 商と余り mochimochi
不正解
2023年12月6日14:24 商と余り mochimochi
不正解
2023年12月3日8:14 商と余り MARTH
正解
2023年12月1日23:00 商と余り natsuneko
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

11月前

6

問題文

鋭角三角形ABCについて,外心をO,重心をG,垂心をH,内心をIとします.
$$AO=\dfrac{325}{24}, AH=\dfrac{125}{12}, AG=\sqrt{145}$$
であるとき,$AI$の2乗を答えてください.

解答形式

答えは非負整数なので非負整数値を入力してください.

求長問題25

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

半円が内接する長方形に、図のように線を引きました。赤と青で示した線分の長さがそれぞれ3,4で、ピンクで示した線分の長さが等しいとき、緑の線分の長さを求めてください。

解答形式

$x=\sqrt{\fbox{アイ}}$です。文字列 アイ を解答してください。


問題文

下図は、直角二等辺三角形と正三角形と頂角が150°の二等辺三角形を組み合わせた図形です。直角二等辺三角形の面積が24㎠のとき、図形全体の面積を求めなさい。

解答形式

単位は㎠(単位は書かなくてよい)、数字は半角で入力してください。
例)10

極限の問題

akaddd 自動ジャッジ 難易度:
18月前

10

以下の極限値を求めよ。

$$\lim_{n\rightarrow{\infty}}\biggr(\lim_{x\rightarrow{0}}\prod_{k=1}^n\frac{kx}{\sin(k+1)x}\biggr)
$$

正方形と2つの円

tb_lb 自動ジャッジ 難易度:
3年前

15

【補助線主体の図形問題 #015】
 今回は円がらみの求長問題にしてみました。地道なド根性解法もありますが、補助線次第では暗算も可能なように仕込んであります。お好みの解法・手法で挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\myang#1{\angle \mathrm{#1}}
\renewcommand\deg{{}^{\circ}}
\def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 前半の方針をぼんやりと
  2. ヒント1の続き
  3. 後半の方針をぼんやりと
  4. ヒント3の続き

各位の数の積

huronntogarasuugaku 自動ジャッジ 難易度:
2年前

10

問題文

nを自然数とする。各位の数の積をs(n)とするとき、s(n)=nを満たすnの総和を求めよ
ただし、nが1桁の時s(n)=s(10+n)が成り立つとする

解答形式

半角数字で入力してください

2年前

13

問題文

図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。

解答形式

半角数字で解答してください。

17月前

16

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

レート当てゲーム

J_Koizumi_144 自動ジャッジ 難易度:
11月前

19

問題文

ポロロッカ王国には$10$個のサッカーチームがあります.各チームにはレートと呼ばれる$0$以上$10$以下の整数が定まっており,レートの異なる$2$チームの試合では,必ずレートの大きい方が勝ちます.レートは秘密にされており,国民は知ることができません.
あるとき,これら$10$個のチームで総当たり戦(全$45$試合)が行われ,引き分けはありませんでした.ポロロッカ王国民であるAさんが,この総当たり戦の結果から各チームのレートを推測しようとしたところ,あり得るパターンは$N$種類存在しました.$N$として考えられる値の合計を求めてください.

解答形式

半角数字で入力してください.

求面積問題24

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

QMT001(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
10月前

9

問題文

$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください.
ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.

解答形式

半角数字で解答してください.