Furret sequence 1

bzuL 自動ジャッジ 難易度: 数学 > 高校数学
2023年12月15日17:33 正解数: 15 / 解答数: 16 (正答率: 93.8%) ギブアップ数: 1

全 16 件

回答日時 問題 解答者 結果
2025年10月4日18:59 Furret sequence 1 Weskdohn
正解
2025年4月22日20:28 Furret sequence 1 Triketone
正解
2024年11月6日10:24 Furret sequence 1 0__citrus
正解
2024年7月7日2:04 Furret sequence 1 roofs
正解
2024年5月8日17:32 Furret sequence 1 miq_39
正解
2024年5月7日22:35 Furret sequence 1 aaabbb
正解
2024年5月7日7:56 Furret sequence 1 yozora184
正解
2024年3月30日1:04 Furret sequence 1 mogura
正解
2024年3月30日1:03 Furret sequence 1 mogura
不正解
2024年1月3日23:47 Furret sequence 1 sqrt_3
正解
2023年12月17日13:47 Furret sequence 1 MARTH
正解
2023年12月15日21:37 Furret sequence 1 nmoon
正解
2023年12月15日21:31 Furret sequence 1 ゲスト
正解
2023年12月15日19:50 Furret sequence 1 natsuneko
正解
2023年12月15日19:18 Furret sequence 1 shakayami
正解
2023年12月15日18:12 Furret sequence 1 J_Koizumi_144
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

OMC不採用問題改題その2

bzuL 自動ジャッジ 難易度:
19月前

18

問題文

$f(n)=n ^{15}+21n^{10}+147n^5+343$ とします.
正整数 $n$ に対して, $f(n)$ が $5^m$ で割り切れるような最大の非負整数 $m$ を $g(n)$ と定めます.$10000$ 以下の正整数 $k $であって $g(n)=k $ を満たす正整数 $n$ が存在するような $k$ の総積を $3343$ で割った余りを解答してください.ただし,$3343$ は素数です.

解答形式

非負整数を解答してください.

OMC不採用問題改題

bzuL 自動ジャッジ 難易度:
22月前

30

問題文

$14^3$ の $16$ 個の正の約数を並び替えた数列を $a_1,\ldots,a_{16}$ とおき,$15^3$ の $16$ 個の正の約数を並び替えた数列を$b_1,\ldots,b_{16}$ とおきます.この二つの数列のスコア
$$
\sum_{k=1}^{16} \frac{a_k}{b_k}
$$
で定めます.数列 $a,b$ の組として考えられるものは $(16!)^2$ 通りありますが,これらの組におけるスコアの(相加)平均を求めてください.ただし,求める値は互いに素な正整数 $p,q$ を用いて,$\dfrac{p}{q}$ と表されるため,$p+q$ を解答してください.

解答形式

半角数字で解答してください.

整数問題2

natsuneko 自動ジャッジ 難易度:
19月前

18

問題文

正整数 $N$ が $2$ で割り切れる最大の回数を $v_2 (N)$ で表すことにします.
(例 : $v_2(6) = 1, \ v_2(16) = 4$)
このとき,
$$\sum_{i = 1}^{1024} \sum_{j = 1}^{1024} \sum_{k = 1}^{1024} v_2 ( \textrm {gcd} (i, j, k))$$
の値を解答して下さい. ( $\textrm{gcd}(i,j,k)$ で $i,j,k$ の最大公約数を表しているとします.)

解答形式

半角数字で解答して下さい.

線分の積

bzuL 自動ジャッジ 難易度:
22月前

22

問題文

直径 $10$ の円周上に $120$ 個の異なる点 $A_1,\ldots, A_{120}$があります.$120$ 個の点のうち $2$ 点を選ぶ方法は ${}_{120}\mathrm{C}_{2}$ 通りあります.この ${}_{120}\mathrm{C}_{2}$ 通りすべての二点の距離の総積の最大値を $M$ としたときに,$M$ は整数値になるので,$M$ の正の約数の個数を答えてください.

解答形式

半角数字で解答してください.

代数問題1

natsuneko 自動ジャッジ 難易度:
21月前

20

問題文

関数 $f : \mathbb{Z} \rightarrow \mathbb{Z}$ が $f(f(x) + y) = x + f(y)$ を (任意の整数の組 $(x, y)$ に対して) 満たすとき, $f(2024)$ の取りうる値の総和を解答してください.

解答形式

半角数字で解答してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
17月前

17

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
19月前

9

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.

初等幾何サンプル問題

bzuL 自動ジャッジ 難易度:
18月前

27

問題文

三角形 $ABC$ の外接円を $\Gamma$ とします.辺 $BC$ 上に点 $X$ をとります.$B,X$ を通り,$\Gamma$ と接する円を $\Omega_1$ とし,$C,X$ を通り,$\Gamma$ と接する円を $\Omega_2$ とします.$\Omega_1$ と $\Omega_2$ は二点で交わっており,$X$ でない方の交点を $Y$ とします.直線 $XY$ は点 $A$ を通り,線分 $XC$ の垂直二等分線も点 $A$ を通りました.
$$BX = 4,CX=1$$を満たす時,三角形 $ABC$ の面積の二乗を求めてください.ただし,求める値は互いに素な二つの正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

19月前

12

問題文

$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする.
$I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.

解答形式

半角数字で解答してください

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
19月前

24

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.

19月前

13

問題文

直線 $AT$ に点 $T$ で接する円 $\Gamma$ を描き,$A$ を通る直線 $m$と円 $\Gamma$ の交点を $A$ に近い方から順に $B,C$ とします.
また,$\angle{CAT}$ の二等分線と直線 $BT$,直線 $CT$ の交点をそれぞれ $D,E$ とします.
$BD=4,DE=8,EC=9$ となったとき,$\triangle{TBC}$ の面積を $S$ とすると,$S^2$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

QMT001(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
19月前

13

問題文

$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください.
ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.

解答形式

半角数字で解答してください.