OMC没問4

natsuneko 自動ジャッジ 難易度: 数学 > 高校数学
2023年12月20日22:46 正解数: 3 / 解答数: 24 (正答率: 12.5%) ギブアップ数: 0
整数

全 24 件

回答日時 問題 解答者 結果
2024年6月7日20:02 OMC没問4 arararororo
不正解
2024年6月3日23:01 OMC没問4 shakayami
不正解
2024年6月3日23:00 OMC没問4 shakayami
不正解
2024年6月3日22:59 OMC没問4 shakayami
不正解
2024年6月3日22:57 OMC没問4 shakayami
不正解
2024年6月3日22:55 OMC没問4 shakayami
不正解
2024年6月3日22:54 OMC没問4 shakayami
不正解
2024年6月3日22:53 OMC没問4 shakayami
不正解
2024年6月3日22:53 OMC没問4 shakayami
不正解
2024年2月15日7:09 OMC没問4 MARTH
正解
2024年1月14日19:18 OMC没問4 RyAy
不正解
2023年12月30日13:26 OMC没問4 J_Koizumi_144
正解
2023年12月22日13:39 OMC没問4 MARTH
不正解
2023年12月22日13:38 OMC没問4 MARTH
不正解
2023年12月22日13:38 OMC没問4 MARTH
不正解
2023年12月22日13:38 OMC没問4 MARTH
不正解
2023年12月22日13:26 OMC没問4 MARTH
不正解
2023年12月22日13:26 OMC没問4 MARTH
不正解
2023年12月22日13:25 OMC没問4 MARTH
不正解
2023年12月21日1:04 OMC没問4 bzuL
正解
2023年12月21日0:18 OMC没問4 nmoon
不正解
2023年12月21日0:17 OMC没問4 nmoon
不正解
2023年12月20日23:49 OMC没問4 nmoon
不正解
2023年12月20日23:13 OMC没問4 nmoon
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

線分の積

bzuL 自動ジャッジ 難易度:
13月前

21

問題文

直径 $10$ の円周上に $120$ 個の異なる点 $A_1,\ldots, A_{120}$があります.$120$ 個の点のうち $2$ 点を選ぶ方法は ${}_{120}\mathrm{C}_{2}$ 通りあります.この ${}_{120}\mathrm{C}_{2}$ 通りすべての二点の距離の総積の最大値を $M$ としたときに,$M$ は整数値になるので,$M$ の正の約数の個数を答えてください.

解答形式

半角数字で解答してください.

代数問題2

natsuneko 自動ジャッジ 難易度:
10月前

6

問題文

実数列 $\lbrace a_n \rbrace_{n = 1, 2, \cdots 2024}$ が以下を満たしています.
・ $a_0 = 0$
・ $0 \leq a_n \leq n+1$
・ $a_{2024} = 2025$

このとき,
$$\sum_{n = 1}^{2024} \sqrt{{a_{n-1}}^2 + {a_{n}}^2 - a_{n-1}a_n - 2na_{n-1} + na_n + n^2}$$
には最小値が存在するため, 最小値を取るときの $a_{1000}$ の値を求めて下さい. ($a_{1000}$ の値は一意に定まります.)

解答形式

答えは, 互いに素な正整数 $a, b$ によって $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.

OMC没問2

natsuneko 自動ジャッジ 難易度:
14月前

8

問題文

正整数 $n$ に対して, $n^i \equiv 1 \ (\textrm{mod} \ 25 )$ を満たす最小の正整数 $i$ を $f(n)$ とします. (ただし, このような $i$ が存在しない場合は, $f(n) = 0$ とします.) このとき, $1 \leq n \leq 10000$ の範囲で $f(n)$ が最大値をとるような $n$ の総積を $1000$ で割った余りを解答して下さい.

解答形式

非負整数値を解答して下さい.

自作問題C1

imabc 自動ジャッジ 難易度:
9月前

6

問題文

以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.

  • $a_0=a_{20000}=0$ .
  • $k=0,1,…,19999$ について $|a_{k+1}-a_k|=1$ .

また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.

  • 以下の条件を全て満たす $1001$ 個の整数の組 $(x_0,x_1,…,x_{1000})$ の個数.
    $\quad$ ・ $k=0,1,…1000$ について $x_k$ は $0$ 以上 $20000$ 以下の 偶数
    $\quad$ ・ $k=0,1,…999$ について $x_k\lt x_{k+1}$ .
    $\quad$ ・ $a_{x_{1000}}=0$ .

階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.

解答形式

答えを入力してください.

組み合わせ問題2

natsuneko 自動ジャッジ 難易度:
12月前

7

問題文

各文字が < か > であるような長さ $13$ の文字列 $S$ の内, 次の条件を満たす整数列 $a_1, a_2, \cdots a_{14}$ が一意に存在するようなものはいくつありますか?
・$S$ の $i$ 文字目が < ならば, $a_{i+1} = a_i + 1$
・$S$ の $i$ 文字目が > ならば, $a_{i+1} = a_i - 1$
・$1 \leq a_k \leq4 \ (k = 1, 2, \cdots, 14)$

解答形式

半角数字で解答して下さい.

QMT001(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
10月前

9

問題文

$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください.
ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.

解答形式

半角数字で解答してください.

商と余り

miq_39 自動ジャッジ 難易度:
13月前

10

問題文

自然数 $n$ に対し,次のように定められた数列 $\{a_{n}\},\{b_{n}\},\{c_{n}\}$ がある:

  • $a_{1}=2023^{2023}$
  • $a_{n}$ を $120$ で割った商が $b_{n}$,余りが $c_{n}$
  • $a_{n+1}=b_{n}+c_{n}$

このとき,$\lim_{n\to\infty}a_{n}$ を求めよ.

解答形式

半角数字で解答してください.

整数問題2

natsuneko 自動ジャッジ 難易度:
10月前

15

問題文

正整数 $N$ が $2$ で割り切れる最大の回数を $v_2 (N)$ で表すことにします.
(例 : $v_2(6) = 1, \ v_2(16) = 4$)
このとき,
$$\sum_{i = 1}^{1024} \sum_{j = 1}^{1024} \sum_{k = 1}^{1024} v_2 ( \textrm {gcd} (i, j, k))$$
の値を解答して下さい. ( $\textrm{gcd}(i,j,k)$ で $i,j,k$ の最大公約数を表しているとします.)

解答形式

半角数字で解答して下さい.

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
10月前

22

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.

No.03 分数式の最小値

Prime-Quest 自動ジャッジ 難易度:
12月前

6

問題

$0,a,b,c$ は相異なる実数で,$a^3b+b^3c+c^3a=ab^3+bc^3+ca^3$ を満たすとき,次の値を求めよ.$$\min_{a,b,c}\dfrac{(a^3+b^3+c^3)(a^4+b^4+c^4+50)}{a^5+b^5+c^5}$$

解答形式

半角数字で入力してください.

組み合わせ問題1

natsuneko 自動ジャッジ 難易度:
13月前

5

問題文

赤玉 $20$ 個と青玉 $21$ 個の計 $41$ 個の玉を横一列に並べます. このとき, 左から $1$ 番目から $20$ 番目までの玉の中に含まれる赤玉の個数を $R$, 青玉の個数を $B$, 左から $22$ 番目から $41$ 番目までの玉の中に含まれる赤玉の個数を $r$, 青玉の個数を $b$ とします. 玉の並べ方は全部で $ \binom{41}{20}$ 通りありますが, その全ての並べ方に対する $Rb + Br$ の値の相加平均を求めて下さい.

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.

QMT002(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
10月前

11

問題文

十万,一万,千,百,十,一の位がそれぞれ $a,b,c,d,e,f$ であるような $6$ 桁の整数を $A$ とし,十万,一万,千,百,十,一の位がそれぞれ $e,f,a,b,c,d$ であるような $6$ 桁の整数を $B$ とします.
相異なる $1$ 桁の整数 $a,b,c,d,e,f$ が $e>a>0$ を満たしながら動くとき,$A$ と $B$ の最大公約数の最大値を求めてください.

解答形式

半角数字で解答してください.