方程式の実数解

RentoOre 自動ジャッジ 難易度: 数学 > 高校数学
2024年3月15日20:45 正解数: 4 / 解答数: 7 (正答率: 57.1%) ギブアップ数: 0

全 7 件

回答日時 問題 解答者 結果
2024年11月21日15:02 方程式の実数解 tima_C
正解
2024年4月6日20:01 方程式の実数解 iwashi
正解
2024年4月6日20:00 方程式の実数解 iwashi
不正解 (0/1)
2024年3月22日17:13 方程式の実数解 noname
正解
2024年3月18日12:04 方程式の実数解 ゲスト
不正解 (0/1)
2024年3月15日21:07 方程式の実数解 sha256
不正解 (0/1)
2024年3月15日21:05 方程式の実数解 natsuneko
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

自作問題その8

MARTH 自動ジャッジ 難易度:
8月前

8

関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.

  • $f_{0}(x)=e^{e^x}$
  • $f_{n}(x)=\dfrac{d}{dx}f_{n-1}(x)\quad (n=1,2,\dots)$.

また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.

  • $\displaystyle A_n=\lim_{x\rightarrow-\infty}e^{-x}f_{n}(x)$ .
  • $\displaystyle B_n=\lim_{x\rightarrow-\infty}e^{-x}\big(e^{-x}f_{n}(x)-A_n)$.

$B_{24}$ の値を求めてください.

e進数!?

amberGames-777 自動ジャッジ 難易度:
7月前

10

問題文

100をe進数で表記すると何桁になるか。(整数部分のみ)

解答形式

半角数字+「桁」という文字(例:1桁)

積分方程式

nanohana 自動ジャッジ 難易度:
22日前

3

問題文

f(x)は連続で微分可能である。
次の式を満たすf(x)を求めよ。$$f(x)=2f(-x)+ \int_{0}^{x^{2}}f'(\sqrt{t})dt$$

解答形式

f(2024)の値を半角数字で入力してください。

6月前

4

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33

対称式の総和②

nanohana 自動ジャッジ 難易度:
5月前

6

問題文

$$
x+ \frac{1}{x} =1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

回答形式

半角数字で答えてください。
また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。

階乗の級数

MARTH 自動ジャッジ 難易度:
5月前

6

$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて,
$$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$
の総和を $f(n)$ とします.
$f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.

4月前

2

問題文

三辺の長さがa!、b!、c!(a,b,cは自然数)となる直角三角形は存在するか。

解答形式

存在するならば組(a,b,c)を1組入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです)

自作問題1

iwashi 自動ジャッジ 難易度:
8月前

2

問題文

$n$を自然数とする。$\displaystyle \sum_{k=1}^{n} n^k$を$8$で割った余りを$a_{n}$、 $\displaystyle S_{n}=\sum_{k=1}^{n}a_{k}$とする。すべての$n$に対して$a_{n+l}=a_{n}$が成り立つような自然数$l$の最小値と$S_{m+2025}=2S_{m}$が成り立つような自然数$m$の最大値を求めよ。

解答形式

1行目に$l$を,2行目に$m$を半角英数字で解答してください。例えば$l=123,m=456$とする場合

123
456

としてください。

漸化式と極限

nanohana 自動ジャッジ 難易度:
2月前

3

問題文

$$S_{n}=(n-2)a_{n+1}$$$$a_{1}=1$$$$\lim_{n\to \infty}S_{n}が有限の値に収束する。$$$$このとき、a_{3}の値を求めよ。$$$$ただし、S_n=a_1+a_2+・・・+a_nである。$$

解答形式

$$a_{3}の値を半角数字で入力してください。$$

No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度:
9月前

3

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解答形式

半角数字で入力してください.

自作1

soka 自動ジャッジ 難易度:
7月前

10

問題

$n$を正整数、$r$を$n$以下の非負整数として、$nCr$を$〈n,r〉$と表します。ここで、$n>2$であるとき、$$〈〈n,2〉,2〉$$が$5$の倍数とならないような$2$桁以下の正整数$n$の総和を求めてください。

解答形式

半角数字で入力してください。

2024③

seven_sevens 自動ジャッジ 難易度:
13月前

8

問題文

数列$a_n$を次のように定める。
$a_1=1$
$a_n=n^{a_{n-1}}$
このとき、以下の問いに答えなさい。
(1)$a_{2023}$の一の位はいくつか求めよ。
(2)$a_{2024}$の一の位はいくつか求めよ。
(3)$a_{2024}$の百の位はいくつか求めよ。

解答形式

(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。