$n=1,2,3...$とします。 $$6n ^5+10n^3+15n^2+29n$$を必ず割り切ることの出来る正整数として最も大きいものの値を求めてください。
半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$n$を正整数、$r$を$n$以下の非負整数として、$nCr$を$〈n,r〉$と表します。ここで、$n>2$であるとき、$$〈〈n,2〉,2〉$$が$5$の倍数とならないような$2$桁以下の正整数$n$の総和を求めてください。
素数 $p,q$ が $$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
任意の自然数$m,n$に対し、$A(m,n)$は $$ A(1,n) = n, \quad A(m+1,n) = \sum_{k=1}^{n}A(m,k) $$を満たす。このとき、$A(x,y)=2024$を満たす自然数$x,y$の組$(x,y)$を求めよ。
$x+y$の総和を半角で解答してください。
$0$ 以上 $6$ 以下の整数からなる組 $(a_1,a_2,a_3,a_4,a_5)$ のうち以下を満たすものの個数を求めてください. $$(a_1a_2)^3+(a_2a_3)^3+(a_3a_4)^3+(a_4a_5)^3+(a_5a_1)^3\equiv0\pmod{7}$$
自然数a b c について abc-ab-a=17 a<b<c となる自然数のa b c の組の数を答えなさい
半角数字で答えてください
$$\sum_{k=m}^{n}k!=p$$を満たす自然数m,nと素数pの組(m,n,p)を全て求めよ。
mが小さい順に、そして組ごとに改行して解答してください。
例えば(m,n,p)=(1,2,3)(2,3,4)(3,4,5)のときは、 1,2,3 2,3,4 3,4,5 のように入力してください
正$n$角形の対角線の本数が素数になるような自然数$n$を全て求めてください。
$n$としてあり得る数を半角で小さい順に1列に1つずつ縦に解答してください。 例:2,3と答えたい時 2 3 と解答してください。
$\angle B$ が鋭角である三角形 $ABC$ がある.いま,$\angle A$ の二等分線と辺 $BC$ との交点を $D$ とし,$D$ から辺 $AB$ に下ろした垂線の足を $H$ とする.$AH = 1944, HB = 2, AC = 2023$ がそれぞれ成り立つとき,辺 $BC$ の長さを求めよ.
半角数字で解答してください.
$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください. (ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)
$0$ でない相異なる実数 $a,b,c,d$ が以下の関係式を満たすとき,$a^2+b^2+c^2+d^2$ の値を求めてください. $\begin{cases} a^3-12a^2-34a+bcd=0\\ b^3-12b^2-34b+cda=0\\ c^3-12c^2-34c+dab=0\\ d^3-12d^2-34d+abc=0\\ \end{cases}$
$a,b$を実数の定数とする。$x$についての方程式 $x^{10}+x^8+(1-2b)x^{6}-6x^4-2ax^3+b^2x^2+a^2+9=0$ の実数解を全て求めよ。また、その時の$a,b$の値を求めよ。
(x,a,b)=(1,1,1),(2,3,4)...という感じで半角で入力してください。(順不同) ±は使わないでください。 底ができるだけ小さくなるようにしてください。 また、m/n乗はa^(m/n)というふうに解答してください。例:3^(2/3),5^(7/8)など
関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.
また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.
$B_{24}$ の値を求めてください.