二重根号が外れる条件

sha256 自動ジャッジ 難易度: 数学 > 高校数学
2024年5月3日19:06 正解数: 5 / 解答数: 11 (正答率: 45.5%) ギブアップ数: 0
二重根号

全 11 件

回答日時 問題 解答者 結果
2025年1月8日18:21 二重根号が外れる条件 kitotch
正解
2025年1月8日18:16 二重根号が外れる条件 kitotch
不正解
2025年1月8日18:14 二重根号が外れる条件 kitotch
不正解
2024年9月9日22:16 二重根号が外れる条件 mits58
正解
2024年5月16日16:41 二重根号が外れる条件 aaabbb
正解
2024年5月9日21:51 二重根号が外れる条件 iwashi
正解
2024年5月9日20:12 二重根号が外れる条件 iwashi
不正解
2024年5月8日22:58 二重根号が外れる条件 miq_39
正解
2024年5月8日22:58 二重根号が外れる条件 miq_39
不正解
2024年5月8日22:57 二重根号が外れる条件 miq_39
不正解
2024年5月3日19:29 二重根号が外れる条件 achapi
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

ちょっと長い方程式

noname 自動ジャッジ 難易度:
9月前

5

少し問題を変更いたしました。ご迷惑をおかけしてしまい申し訳ございません。

問題文

$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$

解答形式

$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。

Combination

Weskdohn 自動ジャッジ 難易度:
5月前

8

問題文

$X$($0<X<2025$)個の玉から$Y$($0<Y<2025$)個を同時に取り出す操作を考える.
この操作が成り立つ$X,Y$について,玉の取り出し方の総和を求めなさい.

但しボールは互いに区別できるものとする.

解答形式

答えは$a^b+c(a,b,c∈ℤ)$通りと書けます.$a,b,c$として様々なものがありますが,
$a+b+c=Z(Z∈ℤ ,Z>0)$について$MIN(Z)$の値を求めて下さい.

追記:8/6日問題文の訂正を行いました.もし,もとの問題文のせいでミスしたという方がいましたら,大変申し訳ありません。

対称式の総和②

nanohana 自動ジャッジ 難易度:
7月前

6

問題文

$$
x+ \frac{1}{x} =1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

回答形式

半角数字で答えてください。
また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。

自作問題6

iwashi 自動ジャッジ 難易度:
2月前

3

問題文

$$
\lim_{n \to \infty} n \left\{ \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{2025}-\int_{0}^{1} x^{2025}dx \right\}
$$を求めよ。

解答形式

答えは互いに素な自然数$p,q$を用いて$\displaystyle\frac{p}{q}$とあらわされるので$p+q$を半角で1行目に記入してください。

ただの連立方程式

sha256 自動ジャッジ 難易度:
10月前

8

問題文

次の$x,y$についての連立方程式を実数の範囲で解いてください。

$$
\begin{cases} \Large\frac{9}{x^2-xy+y^2}+\frac{7}{x^2+xy+y^2}=\frac{x}{256} \\ \Large \frac{9}{x^2-xy+y^2}-\frac{7}{x^2+xy+y^2}=\frac{y}{256} \end{cases}
$$

解答形式

解となる$(x,y)$の組全てについて$x+y$を足し合わせたものを半角英数字で入力してください。

三角関数の方程式

sha256 自動ジャッジ 難易度:
8月前

3

問題文

実数$x$についての以下の方程式を解いてください。($0\leq x\leq 1$)
$$
\tan(\color{red}{\sin^{-1}x})+\cot(\color{blue}{\cos^{-1}x})=\sin(\color{green}{\cot^{-1}x})+\cos(\color{purple}{\tan^{-1}x})
$$
ただし$\cot{x}$は$\frac{1}{\tan{x}}$を意味し、$\sin^{-1}x,\cos^{-1}x,\cot^{-1}x,\tan^{-1}x$でそれぞれの逆関数を表すこととします。

(※定義域と値域の取り方はWikipedia等にあるような一般的なものを用います)

解答形式

解は一つに定まり、整数$a,b$を用いて$x=\sqrt{a+\sqrt{b}}$と書けるので、$a^{10}+b^{10}$の値を半角英数字で入力してください。

8月前

9

問題文

$$
x+ \frac{1}{x} =-1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{m^{3}-7m+9}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

自作問題2(極限)

contrail 自動ジャッジ 難易度:
3月前

10

問題文

方程式 $e^{nx}+x-2=0$ の正の解を$\alpha_n$とおきます.極限$\displaystyle \lim_{n\to \infty} (1+\alpha_n)^n$を求めて下さい.

解答形式

例)半角数字で解答して下さい.

2025年

SU-JACK 自動ジャッジ 難易度:
6月前

5

問題文

$$
a_1=b_1=2025,
\begin{cases} a_{n+1}=a_n-2n+b_{2028}\\ b_{n+1}=b_n+4n+a_{2028}\end{cases}
$$

について、$a_n$の一般項を
$$a_n=α−(n−1)(n−β)$$と表したとき、$β$の値を求めよ

韓国産高校数学問題 - 1

nflight11 自動ジャッジ 難易度:
5月前

7

問題文

すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。

$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$

この時、$|a_{1998}a_{1106}|$を求めよ。

解答形式

答えをそのまま入力しなさい。

平方数

katsuo_temple 自動ジャッジ 難易度:
4月前

15

問題文

$n^2-n+1$が平方数となるような非負整数$n$を全て求めよ。

解答形式

$n$を小さい順に改行して半角で解答して下さい。
例)$n=3,7,9$の場合
3
7
9
と解答して下さい。


問題文

以下の値を求めてください。
$$
\begin{align}
\sum_{k=1}^{33333^2+200\cdot33333}\sqrt{\frac{2k+19999-2\sqrt{k^2+19999k+99990000}}{k^2+19999k+99990000}}
\end{align}
$$

解答形式

答えは互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表されるので、
$p+q$の値を解答してください。


制作者の声

(誰かがもう作ってそうです...知っている方がいれば教えてほしいです)