約数の個数の方程式

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年5月4日20:54 正解数: 7 / 解答数: 17 (正答率: 41.2%) ギブアップ数: 1

全 17 件

回答日時 問題 解答者 結果
2025年5月14日17:49 約数の個数の方程式 Weskdohn
正解
2024年5月16日16:31 約数の個数の方程式 aaabbb
正解
2024年5月16日16:28 約数の個数の方程式 aaabbb
不正解
2024年5月16日16:27 約数の個数の方程式 aaabbb
不正解
2024年5月16日16:26 約数の個数の方程式 aaabbb
不正解
2024年5月11日19:49 約数の個数の方程式 nmoon
正解
2024年5月8日20:57 約数の個数の方程式 miq_39
正解
2024年5月8日20:56 約数の個数の方程式 miq_39
不正解
2024年5月8日20:55 約数の個数の方程式 miq_39
不正解
2024年5月8日20:51 約数の個数の方程式 miq_39
不正解
2024年5月8日20:48 約数の個数の方程式 miq_39
不正解
2024年5月8日20:47 約数の個数の方程式 miq_39
不正解
2024年5月8日10:24 約数の個数の方程式 orangekid
正解
2024年5月6日1:32 約数の個数の方程式 bzuL
正解
2024年5月5日11:41 約数の個数の方程式 MARTH
不正解
2024年5月5日0:27 約数の個数の方程式 natsuneko
正解
2024年5月4日22:32 約数の個数の方程式 orangekid
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

自作問題No.2

Tehom 自動ジャッジ 難易度:
9月前

15

問題文

$64$個の球 $a_0,a_1,...a_{63}$それぞれを白色と黒色で塗り分ける方法で、以下の条件を満たすものは何通りありますか

・任意の整数 $i,j$ $(0\leqq i\leqq7,0\leqq j\leqq4)$ に対し、
$\lbrace a_{8i+j},a_{8i+j+1},a_{8i+j+2},a_{8i+j+3}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個
かつ、
 任意の整数 $k,l$ $(0\leqq k\leqq4,0\leqq l\leqq7)$ に対し、
$\lbrace a_{8k+l},a_{8k+l+8},a_{8k+l+16},a_{8k+l+24}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個

解答形式

半角数字で解答してください.

円形じゃんけん

J_Koizumi_144 自動ジャッジ 難易度:
16月前

18

問題文

$10$人で輪になってじゃんけんをするとき,どの隣り合う$3$人も「あいこ」にならないような手の出し方は何通りありますか?

解答形式

半角数字で入力してください.

16月前

5

問題文

円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.

解答形式

半角数字で解答してください.

除夜コン2023予選C3

shoko_math 自動ジャッジ 難易度:
16月前

6

問題文

$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました.
このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.

解答形式

半角数字で解答してください.

2人で肩にpを乗せて

kusu394 自動ジャッジ 難易度:
12月前

15

問題文

素数 $p,q$ が
$$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

タイリング

J_Koizumi_144 自動ジャッジ 難易度:
16月前

26

問題文

$8\times 8$のマス目に$1\times 2$のタイルと$1\times 1$のタイルを隙間なく並べる方法のうち,以下の条件を満たすものを考えます.

  • どの行にも$1\times 1$のタイルがちょうど$1$つ含まれる.

このような並べ方のうち,横向きの$1\times 2$のタイルの個数が最大となるものは何通りありますか?
ただし,回転や裏返しによって一致する並べ方は区別します.また,$1\times 2$のタイルが横向きであるとは,長辺が行に平行であることを指します.

解答形式

半角数字で入力してください.

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
14月前

9

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.

13月前

7

問題文

下図で、AB=AF=BC=CD=EB、$∠$EAB=80°、$∠$ABC=40°です。
$∠$FDEの大きさは何度ですか。

解答形式

半角数字で入力してください。
例)10

自作問題1

aonagi 自動ジャッジ 難易度:
13月前

19

問題文

一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります.
このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.

ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.

解答形式

求めるべき値は非負整数値として一意に定まるので,これを解答してください.

14月前

10

問題文

$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする.
$I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.

解答形式

半角数字で解答してください

14月前

16

問題文

円 $O_1$,円 $O_2$ が点 $P$ で外接しており,円 $O_1$ 上の点 $Q$ における円 $O_1$ の接線を引いたところ円 $O_2$ と異なる $2$ 点で交わったので,その $2$ 交点を $Q$ に近い方から順に $A,B$ とします.
$AP=4,AB=6,BP=9$ となったとき,${PQ}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
14月前

24

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.