5^nの上一桁は

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月1日10:55 正解数: 7 / 解答数: 12 (正答率: 58.3%) ギブアップ数: 1

全 12 件

回答日時 問題 解答者 結果
2025年5月14日17:49 5^nの上一桁は Weskdohn
正解
2024年6月8日0:59 5^nの上一桁は bzuL
正解
2024年6月8日0:57 5^nの上一桁は bzuL
不正解
2024年6月6日9:39 5^nの上一桁は imabc
正解
2024年6月6日9:39 5^nの上一桁は imabc
不正解
2024年6月6日9:35 5^nの上一桁は imabc
不正解
2024年6月2日21:34 5^nの上一桁は poino
正解
2024年6月2日21:34 5^nの上一桁は poino
不正解
2024年6月2日21:32 5^nの上一桁は poino
不正解
2024年6月2日11:47 5^nの上一桁は natsuneko
正解
2024年6月1日11:50 5^nの上一桁は aisu561_aq
正解
2024年6月1日11:23 5^nの上一桁は ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

最小値

sdzzz 自動ジャッジ 難易度:
20月前

8

問題文

$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$

解答形式

求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.

自作問題No.2

Tehom 自動ジャッジ 難易度:
16月前

15

問題文

$64$個の球 $a_0,a_1,...a_{63}$それぞれを白色と黒色で塗り分ける方法で、以下の条件を満たすものは何通りありますか

・任意の整数 $i,j$ $(0\leqq i\leqq7,0\leqq j\leqq4)$ に対し、
$\lbrace a_{8i+j},a_{8i+j+1},a_{8i+j+2},a_{8i+j+3}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個
かつ、
 任意の整数 $k,l$ $(0\leqq k\leqq4,0\leqq l\leqq7)$ に対し、
$\lbrace a_{8k+l},a_{8k+l+8},a_{8k+l+16},a_{8k+l+24}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個

解答形式

半角数字で解答してください.


問題文

三角形 $ABC$ があり,以下が成り立っています:

$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$

いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.

解答形式

半角数字で解答してください.

N2

orangekid 自動ジャッジ 難易度:
18月前

20

問題文

$17$で割り切れ、各桁の数の和も$17$で割り切れるような正整数を$\textbf{良い数}$と呼びます。$\textbf{相異なる}$良い数同士の差の絶対値としてあり得る最小値を求めなさい。

追記

不備が見つかったため、答えを変更しました。本当に申し訳ございません。

200C

MARTH 自動ジャッジ 難易度:
21月前

10

$n$ を正の整数とする.縦 $3$ 行,横 $3$ 列からなるマス目の各マスに $n,n+1,\ldots,n+8$ を重複なく書き入れる方法であって,以下を満たすものの数を $f(n)$ とします.

  • どの列,どの行についてもその $3$ つに書かれている $3$ 数を $3$ 辺の長さに持つ三角形が存在する.

ただし,回転や反転によって一致する数の書き込み方は,区別するものとします.$f(n)\lt3\times10^5$ を満たすとき,$f(n)$ としてあり得る最大の値を解答してください.

No.03 分数式の最小値

Prime-Quest 自動ジャッジ 難易度:
22月前

7

問題

$0,a,b,c$ は相異なる実数で,$a^3b+b^3c+c^3a=ab^3+bc^3+ca^3$ を満たすとき,次の値を求めよ.$$\min_{a,b,c}\dfrac{(a^3+b^3+c^3)(a^4+b^4+c^4+50)}{a^5+b^5+c^5}$$

解答形式

半角数字で入力してください.

素直な整数

kusu394 自動ジャッジ 難易度:
18月前

13

問題文

正整数 $N$ が 素直 であるとは以下の条件をともに満たすことを言います.

  • $N$ は十進法表記で $6$ 桁であり,各桁に $0$ も $9$ も含まない数である.
  • $N$ の上 $i$ 桁目を $a_i$ とするとき,「$a_1 \le a_2 \le \cdots \le a_6$」もしくは「$a_1 \ge a_2 \ge \cdots \ge a_6$」のいずれかが成り立つ.

素直な整数の総和を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

よくわからないGame

Weskdohn 自動ジャッジ 難易度:
16月前

9

問題

Weskdohn君は次のゲームを行うことになりました.


正$733$角形のマークが書かれたカードW:$W_1W_2 \ldots W_{733}$から一枚選ぶ操作をOPE1と言い,これを$X$回繰り返します.
但し$X$について次の事実がわかっています.

正$3$角形のマークが書かれたカードS:$S_1S_2 S_3$と正$281$角形のマークが書かれたカードN:$N_1N_2 \ldots N_{281}$について,それぞれ一枚ずつ取り出す操作をOPE2といい,OPE2を973回繰り返した場合の数を$X$通りとする.


ゲームで選んだカードWの組み合わせは$Y$通りと書けるので,$Y_{[9]}$の下三桁$n$を求めて下さい.

但し,異なる番号が振られた同じ種類のカード(例えば$E_d$と$E_h$)は互いに区別できるとし,また$O_{[K]}$は,$O$を$K$進法で書いた時の値とします.

解答形式

求めた値を半角で入力して下さい.
ex)答えが6106→6106と入力.
また001のような数値が答えの場合は,0をなくさず001のまま回答して下さい.

幾何問題11/22

miq_39 自動ジャッジ 難易度:
2年前

10

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

G1

orangekid 自動ジャッジ 難易度:
18月前

10

問題文

三角形$ABC$は$|AB|=84$、$|BC|=|CA|=72$を満たす二等辺三角形です。この三角形の垂心を$H$、頂点$A, B, C$から延びる垂線の足をそれぞれ$D,E,F$と置きます。さらに、直線$CF$上に$|DF|=|DG|$を満たす$F$でない点$G$をとります。この時、四角形$DFEG$の面積は互いに素な正整数$p,r$と平方因子を持たない数$q$を用いて$\dfrac{p\sqrt{q}}{r}$と表されるので、$p+q+r$を解答してください。ただし、$|AB|$で$AB$間の距離を表すものとします。

解答形式

半角数字で解答してください。

自作問題No.1

Tehom 自動ジャッジ 難易度:
18月前

8

問題文

凸四角形$ABCD$は$\angle{BAC}$$=$$12^\circ$$,$$\angle {CAD}$$=$$30^\circ$$,$$\angle{ACD}$$=$$24^\circ$$,$$AB=CD$を満たします.このとき、$\angle{ADB}$の値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$度となるので、積$ab$の値を求めてください.

解答形式

半角数字で解答してください.

No.09 関数の値と点対称

Prime-Quest 自動ジャッジ 難易度:
21月前

2

問題

次の関数が $|x-a|\leqq 1$ のもとで負の値と素数の値域幅をとるとき,$\sqrt b$ の平均を求めよ.

  • 二次関数 $y=f(x)$ のグラフは曲線 $y=x^2$ と接しつつ点 $(a,b)$ で対称となる.

解答形式

$100$ 倍した整数部分を半角数字で入力してください.

※ 問題を一部修正しました.今後も手直しが続く可能性があります.