指数・対数といろいろ

hi-yo 自動ジャッジ 難易度: 数学 > 高校数学
2025年6月28日9:17 正解数: 0 / 解答数: 2 ギブアップ数: 0

$$
\sqrt{log_\frac{1}{2}(\frac{1}{256})}の小数部分?
$$


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

基礎チェック(整数)

ona 採点者ジャッジ 難易度:
3月前

2

問題文

a^3+b^3=(ab)^2を満たす自然数a,bの組を全て求めよ

解答形式

例)
記述式 簡単でいいです

指数・対数といろいろ

hi-yo 自動ジャッジ 難易度:
4月前

1

$$
-|-log_\sqrt{a}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{a}^{32}}}}}}|
$$

7進法の循環小数

AS 自動ジャッジ 難易度:
7月前

3

$n$ を自然数として $\displaystyle\frac1n$ と表される数全体の集合を $A$ とする.また,$A$ の要素のうち,$7$ 進法で小数展開したとき,小数点以下が基本周期 $3$ の数字の列で表される循環小数となるもの全体の集合を $B$ とする.
このとき,$B$ の要素の総和を求めよ.答えは互いに素な自然数 $a, b$ により $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$,$2$ 行目に $b$ を答えよ.

必要条件と十分条件

tsukemono 自動ジャッジ 難易度:
15日前

11

第1問

次の文章中の空欄(①)に当てはまるものとしてもっとも適切なものを、ア~エのうちから1つ選び、記号で答えよ。

$a,b,c$を実数とする。$ax^2+bx+c=0$であることは、$x=\frac{-b±\sqrt{b^2-4ac}}{2a}$であるための(①)。

ア 必要十分条件である
イ 必要条件であるが十分条件でない
ウ 十分条件であるが必要条件でない
エ 必要条件でも十分条件でもない

漸化式だよ

tsukemono 自動ジャッジ 難易度:
22日前

2

問題文

数列{$a_{n}$}を次の条件により定める。
$$
a_{1}=a_{2}=1,
a_{n+2}-a_{n+1}+a_{n}=0
 (n=1,2,3,...)$$
これについて、次の問いに答えよ。
$(1)$ $a_{3}$を求めよ。
$(2)$ $a_{2025}$を求めよ。
$(3)$ $\sum_{n=1}^{2025}\quad{a_{n}}$を求めよ。

解答形式

答えのみを半角算用数字で答えてください
例えば(1)の答えが3、(2)の答えが100、(3)の答えが80のときは、
3,100,80
のように答えてください。

第3問

tsukemono 採点者ジャッジ 難易度:
18日前

7

第3問

$t$が実数全体を動くとする。
このとき、点$$(\frac{1}{1+t^2},\frac{t}{1+t^2})$$はどのような図形を描くか答えよ。

解答する際の注意

答えの図形が正確に分かるようにお答えください。

Conkom1910615 ジャッジなし 難易度:
3月前

2

問題文

ある数は2の倍数であり、1を引くと3の倍数である。この数を、小さい順で10個答えよ

解答形式

数字を10個

連立条件下の変数和の値

yaguwa 自動ジャッジ 難易度:
2月前

3

問題

実数$x,y$が
$$
\begin{cases}
x^2+y^2=1\\
2x^3+2y^3=1
\end{cases}
$$
を満たしているとき,$x+y$ のとりうる値をすべて求めよ.

解答形式

解答に$sinθ,cosθ$を含む場合は,$cosθ(0<θ<π)$に統一し,記入例にしたがって全て$半角$で解答してください.なお,度数法で解答すると不正解となるので,弧度法を用いてください.
小数などを用いた近似値での解答は不正解となります.
複数の解答がある場合は小さい値から順に上から改行してください.

記入例
3cos(5π/6)
3cos(π/3)

第7問

tsukemono 採点者ジャッジ 難易度:
18日前

3

第7問

次の定積分を求めよ。$$\int_{0}^{\frac{π}{2}}{\frac{dx}{1+tanx}}\quad$$

第6問

tsukemono 採点者ジャッジ 難易度:
18日前

3

第6問

次の問に答えよ。
$(1)$ $cos3θ=4cos^3θ-3cosθ$を示せ。
$(2)$ $cos4θ$を$cosθ$の整式で表せ。
$(3)$ $cos\frac{2}{7}π$が無理数であることを示せ。

整数問題

sulippa 採点者ジャッジ 難易度:
6月前

6

問題文

素数 $p$ と正の整数 $n$ が、以下の等式を満たすとします。
$$\frac{n^2+np+p^2}{n+p} = 2p-1$$
このような組 $(n,p)$ を全て求めてください。

解答形式

解が有限個であるとされた場合は、全ての解と、それ以外に解が存在しないことの証明を、簡単で構わないのでお願いします。無限個とされた場合は証明いらないので、何らかの形で解を表してください。証明に完全性がないと見なした場合は、採点機能がない都合上、99点をあげたいところも不正解とさせていただきます

第4問

tsukemono 採点者ジャッジ 難易度:
18日前

3

第4問

$θ$を媒介変数とし、次のように表される曲線$C$を考える。$$\begin{cases}x=θ-sinθ\\y=1-cosθ\end{cases}$$
$0≦θ≦2π$として、この曲線$C$の長さ$L$を求めよ。