常に無理数か?

hinu 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月6日11:35 正解数: 8 / 解答数: 38 ギブアップ不可
問題

(1) $a,b$ を整数でない正の有理数とする。 $a^b$ は常に無理数か。

(2) $a$ を整数でない正の有理数とする。 $a^a$ は常に無理数か。

(3) $a,b$ を正の無理数とする。 $a^b$ は常に無理数か。

(4) $a$ を正の無理数とする。 $a^a$ は常に無理数か。

解答方法

解答欄に改行区切りで O (オー)または X (エックス)を記述せよ。正解判定は各行に対して行われ、完答のみ正解となる。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題2

Kinmokusei 自動ジャッジ 難易度:
11月前

7

問題文

緑色の線分の長さは1です。
このとき、円の面積を求めてください。
図中の赤点はそれを含む線分の中点です。

解答形式

答えは(分数)×πの形になります。
分子を1行目に、分母を2行目に半角数字で入力してください。
ただし、既約分数の形で解答してください。
例: (10/3)π → 1行目に10、2行目に3

[A] Natural Number

okapin 自動ジャッジ 難易度:
8月前

24

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。

二等分

okapin 自動ジャッジ 難易度:
11月前

19

問題文

中心$O$, 直径$AB$とする円の$A,B$以外の円周上の点$C$を取り, $\angle BAC=\theta \ (0^\circ<\theta <90^\circ)$ とする。
このとき, 線分$OD$が線分$AC$によって二等分されるような点$D$が円周上に取れるような$\theta$の取りうる範囲を求めよ。

解答形式

求める$\theta$の範囲は$a^\circ<\theta\leq b^\circ$となります。1行目に$a$, 2行目に$b$を半角数字で入力してください。

hinu問題02

hinu 自動ジャッジ 難易度:
11月前

14

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

5月前

18

問題文

(1)$\displaystyle \tan\theta=\frac{1}{4}$ のとき、$\displaystyle \tan2\theta=\frac{\fbox{ア}}{\fbox{イウ}}$ である。

(2)連立方程式

$$
\begin{cases}
x_1=x_2(2+x_1x_2) \\
x_2=x_3(2+x_2x_3) \\
x_3=x_4(2+x_3x_4) \\
x_4=x_1(2+x_4x_1)
\end{cases}
$$

を満たす実数 $(x_1,x_2,x_3,x_4)$ の組は全部で $\fbox{エオ}$ 個あり、そのうち $\tan20^\circ < x_1 < \tan80^\circ$ を満たすような組は $\fbox{カ}$ 個ある。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカ」を半角で1行目に入力せよ。

都合のいいn

masorata 自動ジャッジ 難易度:
11月前

35

問題文

$n$ を整数とする。$x$ の整式

$$
x^4+(3n+2)x^3+(n^2+5)x^2+nx-1
$$

が整数係数の範囲でさらに因数分解できるような $n$ をすべて求めよ。

解答形式

$n$の値を小さい順に1,2,3,......行目にすべて半角で入力せよ。たとえば $n=-123, 45, 678$ と解答する場合、1行目に「-123」、2行目に「45」、3行目に「678」と入力せよ。

円周率 3

hinu 自動ジャッジ 難易度:
11月前

10

問題文

$\pi$ と $\dfrac{355}{113}$ はどちらが大きいか。ただし必要があれば積分

$$
\int_0^1\frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)}dx
$$

を計算せよ。

解答形式

piまたは 355/113 で解答してください。

整数問題①

lucy 自動ジャッジ 難易度:
11月前

12

問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

[C] coin tossing

Benzenehat 自動ジャッジ 難易度:
6月前

25

問題文

1円, 5円, 10円, 50円, 100円, 500円の硬貨が1枚ずつある。1回目の試行で6枚の硬貨を投げ、表が出た硬貨をもらうことができる。2回目の試行では、残った硬貨を投げ、やはり表が出た硬貨をもらうことができる。もらえる金額が600円以上になったらこの試行は終了するものとする。

(1) 1回目の試行で終わる確率はいくらか。
(2) 2回目の試行で終わる確率はいくらか。

解答形式

(1)の答えを1行目に、(2)の答えを2行目に既約分数で入れてください。

解答例

1/2
3/10

[B] constant variable

Benzenehat 自動ジャッジ 難易度:
6月前

16

問題文

ある大きさの球から、ある直径の円柱をくりぬいた。円柱の軸は球の中心を通る。(ビーズのような形を想像してください)
この立体の体積が$36\pi$のとき、以下のうちいずれかの値が一意に定まる。

  1. 円柱の底面の半径
  2. 球の半径
  3. 円柱の深さ

一意に定まるものの番号と、その値を求めよ。

解答形式

一意に定まるものの番号を半角数字で1行目に、その値を2行目に入れてください。2行目は整数または既約分数で答えてください。

解答例

1
4

Thirteen Ones

halphy 自動ジャッジ 難易度:
11月前

15

問題文

$n\geq 2$ を自然数とする。$2$ 進数表記で
\begin{equation}
N=\underbrace{11\cdots 11}_n \underbrace{00\cdots 00} _ {n-1} {} _ {(2)}
\end{equation}と表される自然数 $N$ を考える。$n=13$ のとき,$N$ の正の約数の総和を求めなさい。

解答形式

$2$ 進数で答えなさい。

[A] minimum value (easy)

okapin 自動ジャッジ 難易度:
6月前

11

問題文

原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。