[F] 執根号神

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年12月5日18:00 正解数: 2 / 解答数: 2 (正答率: 100%) ギブアップ不可
平面図形 まそらた杯
この問題はコンテスト「第2回まそらた杯」の問題です。

全 2 件

回答日時 問題 解答者 結果
2025年9月30日19:08 [F] 執根号神 Anyway_Retired
正解
2022年12月22日14:47 [F] 執根号神 tima_C
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

27日前

4

${}$ 西暦2026年問題第9弾です。24時を回って、日付が変わってしまいました。僕の西暦問題では珍しく代数・解析分野からの出題となっています。さらにいうと、前回の問題と同じく$2026$を$2+2\sqrt{6}$と解釈する強引さを見せています。そんな珍しさと強引さを味わいながらお楽しみください。

解答形式

${}$ 解答は求める解の個数をそのまま半角で入力してください。
(例)109個 → $\color{blue}{109}$
 なお、解が存在しない(不能)場合は$\color{blue}{0}$と、解が無数に存在する(不定)場合は$\color{blue}{\mathrm{inf}}$と入力してください。

原始ピタゴラス数

sulippa 自動ジャッジ 難易度:
9月前

4

問題文

互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。
$L^2=kS$ ($k$ は正の整数) を満たすとき、
全てのkの値を求めよ。

解答形式

半角1スペースおきに小さい順に並べてください

京大作サーマスガチャ2025 - SR18

Kta 自動ジャッジ 難易度:
2月前

3

問題文

任意の正整数 $m$ に対して $n^m-n$ が $10!$ の倍数であるような $10!$ 以下の正整数 $n$ の個数を求めよ.

解答形式

半角数字で入力してください。

No.06 二変数の整数解

Prime-Quest 自動ジャッジ 難易度:
24月前

3

問題

$(1)$ 方程式 $12x^2+4xy-21y^2=32x-32y+3$ の整数解 $(x,y)$ を求めよ.
$(2)$ 不等式 $z^2\lt a(a+1)z-a^3$ の奇数解 $z$ が二つとなる実数 $a$ の範囲を求めよ.

解答形式

$a^{xy}$ がとりうる整数の和を半角数字で入力してください.

求長問題14

Kinmokusei 自動ジャッジ 難易度:
4年前

3

問題文

半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。

※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。

解答形式

解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。
ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。

極限

sulippa 自動ジャッジ 難易度:
9月前

7

問題文

n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。

量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。

次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$

ただし、オイラー・マスケロー二定数を $γ$ とする。

解答形式

半角で

整数問題 解説あり

sulippa 自動ジャッジ 難易度:
9月前

3

問題文

$p$ を $p \ge 5$ なる素数とする。集合 $G_p = {1, 2, \dots, p-1}$ の部分集合 $S$ が自己双対的であるとは、
$$a \in S \implies a^{-1} \pmod p \in S \quad \text{かつ} \quad a \in S \implies p-a \in S$$
が全ての $a \in S$ に対して成り立つことと定義する(ここで $a^{-1}$ は $\pmod p$ における $a$ の乗法逆元)。

$N_p$ を、$G_p$ の自己双対的な部分集合 $S$ の総数とする(空集合 $\emptyset$ も含む)。

$N_p = 32$ となるような素数 $p$ ($p \ge 5$) をすべて求めよ。


解答形式

解を半角1スペースおきに小さい順に並べてください

除夜コン2023本選A2

shoko_math 自動ジャッジ 難易度:
2年前

6

問題文

正の実数 $a,b,c,d$ が $\Bigg\{\begin{aligned}
a+\dfrac{b}{4}+\dfrac{c}{9}+\dfrac{d}{16}=25 \\
\dfrac{49}{a}+\dfrac{64}{b}+\dfrac{81}{c}+\dfrac{100}{d}=36
\end{aligned}$ の $2$ 式を満たすとき,$d$ の最小値は最大公約数が $1$ の正の整数 $p,q,r$ を用いて $\dfrac{p-\sqrt{q}}{r}$ と表されるので,$p+q+r$ の値を解答してください.

解答形式

半角数字で解答してください.

求長問題20

Kinmokusei 自動ジャッジ 難易度:
4年前

4

問題文

半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。

※平行四辺形の一辺と半円は接する。

解答形式

$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。

Two sequences (学コン2025-2-6)

Lim_Rim_ 自動ジャッジ 難易度:
10月前

4

問題文

$p=2^{10} - 3$とおき, 数列$a_n, b_n$を以下の式で定める.
\begin{aligned}
&a_0=0,\quad a_1 = 1,\quad a_{n+2} = 2a_{n+1} +2a_n & (n=0,1,\dots) \\
&b_0=0, \quad b_1 = 1,\quad b_{n+2} = 2b_{n+1} +(p+2)b_n & (n=0,1,\dots)
\end{aligned}

(1) $a_n,b_n$をそれぞれ$n$で表せ.
(2) $a_{1024}$を$p$で割った余りを求めよ. ただし, 整数$m$に対して$m^p\equiv m\pmod{p}$であることを用いてもよい.

解答形式

(2) の解答を入力してください((1)は解答参照)

備考

本問は大学への数学2025年2月号6番に掲載された自作問題です.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
2年前

6

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.