[F] 執根号神

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年12月5日18:00 正解数: 1 / 解答数: 1 (正答率: 100%) ギブアップ不可
平面図形 まそらた杯
この問題はコンテスト「第2回まそらた杯」の問題です。

解答

$\angle\mathrm{BAC}=\theta,\angle\mathrm{DAC}=\phi\ \ (0\leq\theta,\phi\leq\pi/2)$ とおき、$xy$ 平面で $\mathrm{A}(0,0),\mathrm{B}(\cos\theta,\sin\theta),\mathrm{C}(2\cos\theta,0),\mathrm{D}(2\cos\phi,2\sin\phi)$ と座標をとる。このとき$\mathrm{AB=BC}=1,\mathrm{DA}=2$ が満たされている。

まず $\mathrm{CD}=1$ を用いて $\cos\phi$ を $\cos\theta$ で表す。$\triangle\mathrm{DAC}$ に余弦定理を用いると

$$
\begin{eqnarray}
\cos\phi&=&\frac{\mathrm{AD}^2+\mathrm{AC}^2-\mathrm{CD}^2}{2\cdot\mathrm{AD}\cdot\mathrm{AC}}\\
&=&\frac{3+4\cos^2\theta}{8\cos\theta}\ \ \ \ \cdots(1)
\end{eqnarray}
$$

である。さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっていることから $0\leq\phi\leq\theta$ であり、いま $0\leq\theta,\phi\leq\pi/2 $ であるからこれは $1 \geq \cos\phi \geq \cos\theta$ と同値である。$(1)$ を用いると、右側の不等式は $(2\cos\theta-3)(2\cos\theta-1)\leq0$ と同値であり、($\cos\theta\leq1$ なので)$1/2\leq\cos\theta$ を得る。一方左側の不等式からは $\cos^2\theta\leq3/4$ を得る。したがって $\cos^2\theta$ のとり得る値の範囲は

$$
\begin{eqnarray}
\frac{1}{4}\leq\cos^2\theta\leq\frac{3}{4}\ \ \cdots(2)
\end{eqnarray}
$$

である。

さて、次に $(2)$ のもとで点 $\mathrm{P}$ の座標を求める。直線 $\mathrm{BC},\mathrm{DA}$ の方程式はそれぞれ

$$
\begin{eqnarray}
&&\mathrm{BC}: \frac{x}{\cos\theta}+\frac{y}{\sin\theta}=2\\
&&\mathrm{DA}: y=\tan\phi \ x
\end{eqnarray}
$$

であるから、これらを連立することで点 $\mathrm{P}$ の座標は

$$
\begin{eqnarray}
\mathrm{P} \left(\frac{2}{\displaystyle\frac{1}{\cos\theta}+\frac{\tan\phi}{\sin\theta}}, \frac{2\tan\phi}{\displaystyle\frac{1}{\cos\theta}+\frac{\tan\phi}{\sin\theta}} \right)
\end{eqnarray}
$$

と求まる。したがって線分 $\mathrm{AP}$ の長さは、 $(1)$ を用いて変形することで

$$
\begin{eqnarray}
\mathrm{AP}&=& 2\sqrt{1+\tan^2\phi}\left( \frac{1}{\cos\theta}+\frac{\tan\phi}{\sin\theta} \right)^{-1}\\
&=&2\left( \frac{\cos\phi}{\cos\theta}+\frac{\sin\phi}{\sin\theta} \right)^{-1}\\
&=&2\left( \frac{3+4\cos^2\theta}{8\cos^2\theta}+\frac{\sqrt{1-\frac{(3+4\cos^2\theta)^2}{64\cos^2\theta}} }{\sqrt{1-\cos^2\theta} } \right)^{-1}\\
&=&16\left( \frac{3+4\cos^2\theta}{\cos^2\theta}+\sqrt{ \frac{(4\cos^2\theta-9)(4\cos^2\theta-1)}{\cos^2\theta(\cos^2\theta-1)} } \right)^{-1}
\end{eqnarray}
$$

と表せる。ここで $t=\cos^2\theta$ とおき

$$
f(t)=\frac{3+4t}{t}+\sqrt{\frac{(4t-9)(4t-1)}{t(t-1)}}\ \ \left(\frac{1}{4} \leq t \leq \frac{3}{4} \right)
$$

と定めれば、$\mathrm{AP}$ の長さが最大となるのは $f(t)$ が最小となるときである。なお $(2)$ より $4t-9<0,4t-1>0,t>0,t-1<0$ であり、したがって根号の中身は正である。

さて、最小値を求めるため $f(t)$ を $t$ で微分すると

$$
\begin{eqnarray}
f'(t)&=&-\frac{3}{t^2}+\frac{1}{2}\sqrt{\frac{t(t-1)}{(4t-9)(4t-1)}}\ \cdot\ \frac{(32t-40)t(t-1)-(4t-9)(4t-1)(2t-1)}{t^2(t-1)^2}\\
&=&-\frac{3}{t^2}+\frac{1}{2}\sqrt{\frac{t(t-1)}{(4t-9)(4t-1)}}\ \cdot\ \frac{3(8t^2-6t+3)}{t^2(t-1)^2}\\
&=&\frac{3}{2t^2} \left(-2+ \sqrt{\frac{t(t-1)}{(4t-9)(4t-1)}}\ \cdot\ \frac{8t^2-6t+3}{(t-1)^2} \right)
\end{eqnarray}
$$

である。よって $4t-9<0,t-1<0,8t^2-6t+3>0$ に注意して同値変形すると、$f'(t)$ の符号について

$$
\begin{eqnarray}
&&f'(t)\geq0\\
\Leftrightarrow&&\sqrt{\frac{t(t-1)}{(4t-9)(4t-1)}}\ \cdot\ \frac{8t^2-6t+3}{(t-1)^2} \geq 2 \\
\Leftrightarrow&&\sqrt{\frac{t(t-1)}{(4t-9)(4t-1)}} \geq \frac{2(t-1)^2}{8t^2-6t+3} \\
\Leftrightarrow&&\frac{t(t-1)}{(4t-9)(4t-1)}\geq\frac{4(t-1)^4}{(8t^2-6t+3)^2}\\
\Leftrightarrow&&t(8t^2-6t+3)^2\geq4(t-1)^3(4t-9)(4t-1) \\
\Leftrightarrow&& 64t^5-96t^4+84t^3-36t^2+9t \geq 64t^5-352t^4+708t^3 -652t^2+268t-36\\
\Leftrightarrow&& 256t^4-624t^3+616t^2-259t +36 \geq 0
\end{eqnarray}
$$

が成り立つ。したがって、

$$
\begin{eqnarray}
g(t) &=& 4(256t^4-624t^3+616t^2-259t +36)\\
&=& 1024t^4-2496t^3+2464t^2-1036t +144
\end{eqnarray}
$$

とおくと $f'(t)$ の符号変化と $g(t)$ の符号変化は一致する。

ここで実数 $\displaystyle a=-\frac{2496}{64}=-39,b=2464,c=-\frac{1036}{2}=-518$ について実数 $p,q$ を

$$
\begin{eqnarray}
p&=&\frac{b+c-a^2}{a+64}=\frac{2464-518-39^2}{-39+64}=\frac{425}{25}=17,\\
q&=&64p+a^2-b=64\times17+39^2-2464=145
\end{eqnarray}
$$

で定めると $p^2-q=17^2-145=144$ が成り立つので、与えられた事実を用いると

$$
\begin{eqnarray}
g(t) &=& 1024t^4-2496t^3+2464t^2-1036t +144\\
&=&1024t^4+64at^3+bt^2+2ct+p^2-q\\
&=&(32t^2+at+p)^2-q(t-1)^2\\
&=& (32t^2-39t+17)^2-145(t-1)^2\\
&=& (32t^2-39t+17+\sqrt{145}(t-1))(32t^2-39t+17-\sqrt{145}(t-1))\\
&=& (32t^2+(-39+\sqrt{145})t+17-\sqrt{145})(32t^2+(-39-\sqrt{145})t+17+\sqrt{145})
\end{eqnarray}
$$

と因数分解できる。すなわち

$$
\begin{eqnarray}
g_1(t) &=& 32t^2+(-39+\sqrt{145})t+17-\sqrt{145}\\
g_2(t)&=& 32t^2+(-39-\sqrt{145})t+17+\sqrt{145}
\end{eqnarray}
$$

とおくと $g(t)=g_1(t)g_2(t)$ である。

ここで、$2$ 次方程式 $g_2(t)=0$ の判別式は

$$
\begin{eqnarray}
&&(-39-\sqrt{145})^2-128(17+\sqrt{145})\\
&=&-510-50\sqrt{145}<0
\end{eqnarray}
$$

であるから実数解を持たない。したがって結局 $f'(t)$ の符号変化は $g_1(t)$ の符号変化に等しい。そして

$$
\begin{eqnarray}
g_1\left( \frac{1}{4} \right) &=& 2+\frac{-39+\sqrt{145}}{4}+17-\sqrt{145}\\
&=&\frac{8-39+\sqrt{145}+68-4\sqrt{145}}{4}\\
&=&\frac{37-3\sqrt{145}}{4}>0\\
g_1\left( \frac{1}{2} \right) &=& 8+\frac{-39+\sqrt{145}}{2}+17-\sqrt{145}\\
&=&\frac{16-39+\sqrt{145}+34-2\sqrt{145}}{2}\\
&=&\frac{11-\sqrt{145}}{2}<0\\
g_1\left( \frac{3}{4} \right) &=& 18+\frac{-117+3\sqrt{145}}{4}+17-\sqrt{145}\\
&=&\frac{72-117+3\sqrt{145}+68-4\sqrt{145}}{4}\\
&=&\frac{23-\sqrt{145}}{4}>0\\
\end{eqnarray}
$$

であるから、$f(t)$ が極小値をとる $t$ が$1/2<t<3/4$ の範囲に存在し、その値は $2$ 次方程式 $g_1(t)=0$ の $2$ つの解のうち大きい方に等しく

$$
\begin{eqnarray}
t&=&\frac{1}{64} \left( 39-\sqrt{145} + \sqrt{ (-39+\sqrt{145})^2 -128(17-\sqrt{145}) }\right) \\
&=&\frac{39-\sqrt{145}+\sqrt{-510+50\sqrt{145}\ }}{64}
\end{eqnarray}
$$

である。さらに $f(1/2)=10+2\sqrt7<16=f(1/4)=f(3/4)$ であるから、上の $t$ の値において $f(t)$ は最小値をとることがわかる。

さて、求めるのは $f(t)$ が最小になる状況における $\mathrm{AC}=2\cos\theta=2\sqrt{t}$ の値であった。上の $t$ の値を代入すれば

$$
\begin{eqnarray}
\mathrm{AC}&=&\displaystyle 2\sqrt{\frac{39-\sqrt{145}+\sqrt{-510+50\sqrt{145}\ }}{64}}\\
&=&\frac{\sqrt{39-\sqrt{145}+\sqrt{-510+50\sqrt{145}\ }}}{4}\\
\end{eqnarray}
$$

を得る。したがって

$$
\begin{eqnarray}
\fbox{アイ}=39,\fbox{ウエオ}=145,\fbox{カキクケ}=-510,\fbox{コサ}=50,\fbox{シスセ}=145,\fbox{ソ}=4\\
\end{eqnarray}
$$

である。

コメント

ここまで読んでいただきありがとうございます。$f(t)$ の表式を求めるところまでいけば、あとはWolframAlphaに投げればフェラーリの方法で $4$ 次方程式の解が求まります。


おすすめ問題

この問題を解いた人はこんな問題も解いています

No.08 絶対値を含む命題

Prime-Quest 自動ジャッジ 難易度:
2月前

1

問題

次の関数 $x,y$ における定数 $c$ の命題「つねに $x\geqq 3$ ならば $y$ の値域幅は $c$ 以上」は真か.$$0\leqq t\leqq 2c,\quad x=|t-c|+|t-3|+|t-5|,\quad y=|||t-1|-2|-3|$$

解答形式

逆,裏,対偶それぞれの整数反例の和を半角数字で入力してください.

4重根号

tsx 自動ジャッジ 難易度:
16月前

4

問題文

以下の多重根号を簡略化せよ。

2022/12/09 訂正:

難易度やnaoperc様よりご指摘いただいた根号の指数の誤りなど複数箇所を訂正しました.

2023/02/11 訂正:

問題文, 解答形式の文章を他の問題と統一しました. 解答に影響はありません.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

解の配置問題

zyogamaya 自動ジャッジ 難易度:
3年前

5

問題文

$x$に関する3次方程式$x^3+ax+b=0$($a,b$は実数)の3解の絶対値がすべて1以下となる$a,b$の必要十分条件が表す領域を$ab$平面に図示し、その面積を求めよ。

解答形式

面積の値のみを解答してください。答えは分数になるので/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7

何進法の世界?【改訂版】

Gauss 自動ジャッジ 難易度:
2年前

3

問題文

$\quad$
鈍角三角形の三辺の長さが $40_{(N)},$ $399_{(N)},$ $401_{(N)}$ である.
自然数 $N$ の満たす条件を求めよ.
$$\quad$$

解答形式

半角で入力してください.
$N$ の値が一意に定まる場合は, その値を入力してください.
$N$ の値に範囲がある場合は, 最小値~最大値 という形式で入力してください.
ただし, 最大値が存在しない場合は, 最小値~ という形式で入力し, 複数の区間が存在する場合は最小値の小さいものから改行区切りで入力してください.
$\mathrm{ex})$ 解答が $N=17,~22≦N≦30,~330≦N$ の場合
  17
  22~30
  330~

求長問題20

Kinmokusei 自動ジャッジ 難易度:
2年前

2

問題文

半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。

※平行四辺形の一辺と半円は接する。

解答形式

$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。

底の範囲は...?

aoneko 採点者ジャッジ 難易度:
3年前

2

問題文

a≠1である
M=log₂aのときlogₐM>1となるaの範囲を求めよ

解答形式

例)a>0

求長問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

2

問題文

半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。

※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。

解答形式

解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。
ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。

有名な解法を使いたい

Kinmokusei 自動ジャッジ 難易度:
3年前

2

問題文

次の文章の空欄を埋めてください。ただし、以下の文章全てにおいて$x>0$とします。
$(1.1)$
$f(x)=x+4x^{-2}$の最小値を、微分を用いて求めよう。まず、
$$f'(x)=\fbox ア-\frac{\fbox イ}{x^3}$$である。$f'(x)$の符号は$x=\fbox ウ$の前後でのみ変化するから、$f(x)$は$x=\fbox ウ$で極値をとり、さらにそれが最小値であることが分かる。したがって、$f(x)$の最小値は$\fbox エ$である。

この問題は$(1.2)$に示すような解法が知られている。

$(1.2)$
相加相乗平均の関係式を用いて$f(x)$の最小値を求める。$a_1+a_2=1$を満たす$0$以上の実数$a_1,a_2$を用いて、
$$f(x)=a_1x+a_2x+\frac{4}{x^2}\ge3\left(a_1x\cdot a_2x\cdot\frac{4}{x^2}\right)^{\frac 13}=3(4a_1a_2)^{\frac 13}$$とする。いかなる$a_1,a_2$の組に対してもこの不等式は成立する。一方で、等号を成立させる$x$が存在するには、$a_1x=a_2x$でなければならないから、$a_1=a_2$となる。このとき、等号成立条件
$$a_1x=a_2x=\frac{4}{x^2}$$を満たす$x$は存在して、その値は$x=\fbox ウ$で、不等式の右辺の値は$\fbox エ$となり、最小値が得られる。

$(2)$
$g(x)=x+3x^{-1}+x^{-2}$の最小値を、$(1.2)$の解法に準じて求めよう。
$(1.2)$中の議論と同様に、等号成立条件を考えれば、同類項の係数(前問では$a_1,a_2$にあたる)が異なってはならないと言える。したがって、$3$つの自然数$b_1,b_2,b_3$を用いて、$$g(x)=b_1\cdot \frac{x}{b_1}+b_2\cdot\frac{3}{b_2x}+b_3\cdot\frac{1}{b_3x^2}$$と考えることにする(即ち、$b_1$個の$x/b_1$、$b_2$個の$3/b_2x$、$b_3$個の$1/b_3x^2$の和と考える)。相加相乗平均の関係式を適用したときに、累乗根の中身が定数となるには、$b_1=\fbox オb_2+\fbox カb_3$であればよい。等号成立条件は$$\frac{x}{b_1}=\frac{3}{b_2x}=\frac{1}{b_3x^2}$$である。中辺と最右辺の等式から、$x=b_2/(3b_3)$であり、これと最左辺・最右辺の等式から、$$\frac{b_2}{3b_3\left(\fbox オb_2+\fbox カb_3\right)}=\frac{9b_3}{b_2^2}$$整理して、$$b_2^3-\fbox{キク}b_2b_3^2-\fbox{ケコ}b_3^3=0$$この式を解くと、$b_2/b_3=\fbox サ/\fbox シ$を得られるので、$b_1:b_2:b_3=\fbox ス:\fbox セ:\fbox ソ$であれば良いことが分かる。これより、$$g(x)\ge\left(b_1+b_2+b_3\right)\left(\left(\frac{x}{b_1}\right)^{b_1}\left(\frac{3}{b_2x}\right)^{b_2}\left(\frac{1}{b_3x^2}\right)^{b_3}\right)^{\frac{1}{b_1+b_2+b_3}}=\frac{\fbox{タチ}}{\fbox ツ}$$であり、$x=\fbox テ$で等号が成立して、最小値となる。

解答形式(要注意!)

以下のこと(特に2つ目)に注意して解答してください。

・$\fbox ア~\fbox テ$には$0$以上$9$以下の整数が入ります。
・式の係数・分母の空欄$\left(\fbox オ・\fbox カ・\fbox シ・\fbox ツ\right)$には$1$が入る可能性もあります。
・$\fbox ス~\fbox ソ$は、$\fbox ス+\fbox セ+\fbox ソ$が最小となるようにしてください。また、分数は既約分数にしてください。

文字列アイウエを$1$行目
文字列オカキクケコを$2$行目
文字列サシスセソを$3$行目
文字列タチツテを$4$行目
に入力して解答してください。

ハノイの塔

KNKR_UT 自動ジャッジ 難易度:
2年前

2

問題文

3本の杭と中央に穴のあいた大きさの異なる$n$枚の円盤があります。いま、杭の1つにすべての円盤が小さいものが上にくるように積み重なっています(初期状態)。この状態から下記のルールを守りながら操作を行うとき、初期状態から到達し得る状態は何通りありますか。ただし初期状態も1通りと数え、また3本の杭は区別することとします。

例えば「左端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」を1つ、そこから操作を一回だけ行い、「左端に大きさ2から$n$の円盤、真ん中に大きさ1の円盤が積み重なっている状態」を1つ、のように状態の数をカウントします。また、「真ん中の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」と、「右端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」のように杭が異なる場合もそれぞれ別の状態としてカウントします。

ルール
  • 円盤は一回に一枚ずつしか移動できない。
  • 小さな円盤の上に大きな円盤を乗せることはできない。

解答形式

半角英数字と下記の半角記号で答えてください。式中にスペースを含めないでください。

使える記号
  • 「+」加算
  • 「-」減算
  • 「*」乗算
  • 「/」除算(分数)
  • 「( )」かっこ
  • 「^」冪乗
  • 「!」階乗
2年前

4

問題文

初めに$N$枚のコインを持っています。下記のルールを守ってゲームを$m$回するとき、最後に持っているコインの枚数としてありえる枚数は$K$通りあります。このとき場合の数$K$を最大化するための$m$を答えてください。

ルール
  • コインゲーム筐体は$n$台あり一列に並んでいます。
  • 左から$i$番目の筐体でゲームをするにはコインを$i$枚消費します。
  • 1つの筐体につき一度しかゲームをできません。
  • ゲームに成功するとその筐体で消費した枚数の倍の枚数のコインが手に入ります。
  • ゲームに失敗するとコインは一枚も手に入りません。
  • 筐体は好きな順番でゲームをすることができます。
制約
  • $1 \le m \le n$
  • $2 \le n $
  • $ n^2 < N $

解答形式

半角英数と下記の半角記号で答えてください。

半角記号

()+-/^!

x^(n-1)/(x+y)!

[C] A Downward Tower

halphy 自動ジャッジ 難易度:
3年前

2

問題文

$n=0,1,\cdots$ に対し,$I_n$を
$$
I_n=\sum_{k=0}^{\infty}\frac{1}{2^{k}k!(2n+2k-1)!!}
$$で定める。ただし $(-1)!!=1$ とする。この級数は収束することが知られている(例えば,ダランベールの判定法を適用すればよい)。特に
$$
I_0+I_1=\fbox{ア}
$$である。また,$\{I_n\}$ は漸化式
$$
I_{n-1}-I_{n+1}=(\,\fbox{イ}\,n-\fbox{ウ}\,)I_n\quad(n=1,2,\cdots)
$$を満たし
$$
\lim_{n\to\infty}\frac{I_{n+1}}{I_n}=\fbox{エ}
$$が成り立つ。これらの結果を用い,漸化式を変形すると
$$
1+\cfrac{1}{3+\cfrac{1}{5+\cfrac{1}{7+\cfrac{1}{\ddots}}}}=\frac{\fbox{オ}^{\fbox{カ}}+\fbox{キ}}{\fbox{ク}^{\fbox{ケ}}-\fbox{コ}}
$$が得られる。ただし $\fbox{オ}\neq\fbox{キ}$ とする。

注意

自然数 $n\geq 1$ に対し,$n!!$ は $1$ 個とばしの階乗を表す。例えば,$n$ が奇数のとき
$$
n!!=n(n-2)(n-4)\cdots 3\cdot 1
$$である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{コ}$ には,半角数字 0 - 9 ,記号 - ,円周率 π ,自然対数の底 e のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{コ}$ に当てはまるものを改行区切りで入力してください。

平面図形①

pontikisamurai 自動ジャッジ 難易度:
2年前

2

問題文

四角形ABCD、四角形GHCFはそれぞれ正方形で、1辺の長さはそれぞれ10cm、4cmです。また、DCとFC、BCとHCはぴったり重なっているとする。また、四角形IBKJは長方形で、IJは2cm、IBは4cmとし、ABとIB、BCとBKはぴったり重なっているとする。更に、AJとDGの延長とBCとの交点をEとし、Gを通りΔADEの面積を2等分する線とADとの交点をP、Jを通りΔADEの面積2等分する線と、ADとの交点をRとする。さらにPGの延長とBCとの交点をQ、RJとABとの交点をSとする。PGとRJの交点をOとする。四角形OJEQの面積を求めよ。

解答方法

分数は/で表してください。
例)2分の9は 9/2 で表す。