求面積問題10

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2020年10月5日19:38 正解数: 6 / 解答数: 7 (正答率: 85.7%) ギブアップ数: 2

全 7 件

回答日時 問題 解答者 結果
2024年3月7日17:43 求面積問題10 Prime-Quest
正解
2023年12月11日13:09 求面積問題10 nmoon
正解
2023年11月16日15:53 求面積問題10 naoperc
正解
2021年2月10日16:34 求面積問題10 mochimochi
正解
2020年12月21日11:47 求面積問題10 minaduki_foo
不正解
2020年10月18日18:57 求面積問題10 nesya
正解
2020年10月7日4:57 求面積問題10 baba
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題11

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

【解答形式に注意!】

半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。
ただし、同じ印をつけた部分の長さは等しいです。

解答形式

(青の面積) > (赤の面積) なら 1
(青の面積) = (赤の面積) なら 2
(青の面積) < (赤の面積) なら 3
を、半角数字で解答してください。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。

求長問題4

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

正七角形2つが図のように配置されています。
赤色の線分の長さが7のとき、青色の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題9

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

問題文を3つの半円が図のように配置されています。赤い部分の面積が9、緑の部分の面積が5のとき、青い部分の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題11

Kinmokusei 自動ジャッジ 難易度:
3年前

15

問題文

長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題13

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

図のように正方形・半円が配置されています。正方形の一辺の長さが2であるとき、青で示した部分の面積(の合計)を求めてください。

解答形式

半角数字で解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求面積問題15

Kinmokusei 自動ジャッジ 難易度:
3年前

11

問題文

緑色の五角形の面積を求めてください。
紫でしめした3つの角は等しく、赤同士、青同士の線分はそれぞれ等しい長さです。

解答形式

半角数字で解答してください。

整数問題(倍数)

zyogamaya 自動ジャッジ 難易度:
4年前

16

問題文

$f(x)=x^3+7x+6$の値が63の倍数になるような2桁の自然数$x$をすべて求めよ。

解答形式

解1つごとに改行して上から小さい順に半角数字で入力してください。$x=$は書かなくて良いです。

[A] minimum value (easy)

okapin 自動ジャッジ 難易度:
4年前

15

問題文

原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

[B] Triangles 1

halphy 自動ジャッジ 難易度:
4年前

16

問題文

$k>0$ を整数の定数とする。以下の条件

$$
{\rm AB}=8, {\rm AC}=k, \angle {\rm ABC}=60^{\circ}
$$

を満たす三角形 ${\rm ABC}$ が存在するような整数 $k$ の最小値は $\fbox{\text{ア}}$ である。

また,条件を満たす三角形 ${\rm ABC}$ が一意的に存在するような整数 $k$ の最小値は $\fbox{イ}$ である。

ただし,互いに合同であるような $2$ つの三角形は区別しない。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{イ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{イ}$ に当てはまるものを改行区切りで入力してください。