[D] monotonous decrease

Benzenehat 自動ジャッジ 難易度: 数学 > 高校数学
2020年10月30日20:00 正解数: 9 / 解答数: 15 (正答率: 60%) ギブアップ不可
この問題はコンテスト「Okapin Mathematical Contest 2」の問題です。

問題文

$k$を$0$以上の実数, $e$を自然対数の底とする。数列$a_n$を
$$a_n=\frac{n!e^n}{n^{n+k}}$$
と定める。任意の自然数$n$に対して, $a_{n+1} < a_n$が成り立つような最小の$k$を求めよ。

解答形式

整数または既約分数で答えてください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

[B] constant variable

Benzenehat 自動ジャッジ 難易度:
4年前

19

問題文

ある大きさの球から、ある直径の円柱をくりぬいた。円柱の軸は球の中心を通る。(ビーズのような形を想像してください)
この立体の体積が$36\pi$のとき、以下のうちいずれかの値が一意に定まる。

  1. 円柱の底面の半径
  2. 球の半径
  3. 円柱の深さ

一意に定まるものの番号と、その値を求めよ。

解答形式

一意に定まるものの番号を半角数字で1行目に、その値を2行目に入れてください。2行目は整数または既約分数で答えてください。

解答例

1
4

[A] minimum value (easy)

okapin 自動ジャッジ 難易度:
4年前

15

問題文

原点$O$とする$xy$平面上で点$(3,2)$を通る傾き負の直線と$x$軸,$y$軸との交点をそれぞれ$A,B$とするとき、$\triangle OAB$の面積の最小値を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

[E] minimum value (hard)

okapin 自動ジャッジ 難易度:
4年前

5

問題文

$a,b$を$a>1,b>1$を満たす実数とする。
$\theta$が$0\leq\theta<2\pi$の範囲を動くとき$f(\theta)=\sqrt{a^2-2a\cos\theta+1}+\sqrt{b^2-2b\sin\theta+1}$の最小値が$\sqrt{a^2+b^2}$となるような$(a,b)$の存在範囲を$ab$平面に図示したとき、その領域の面積を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

[C] coin tossing

Benzenehat 自動ジャッジ 難易度:
4年前

28

問題文

1円, 5円, 10円, 50円, 100円, 500円の硬貨が1枚ずつある。1回目の試行で6枚の硬貨を投げ、表が出た硬貨をもらうことができる。2回目の試行では、残った硬貨を投げ、やはり表が出た硬貨をもらうことができる。もらえる金額が600円以上になったらこの試行は終了するものとする。

(1) 1回目の試行で終わる確率はいくらか。
(2) 2回目の試行で終わる確率はいくらか。

解答形式

(1)の答えを1行目に、(2)の答えを2行目に既約分数で入れてください。

解答例

1/2
3/10

[F] endless sequence

okapin 自動ジャッジ 難易度:
4年前

9

問題文

(1)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときの循環節(※)が2以上8以下であるような$p$は6つ存在する。フェルマーの小定理を用いて$p$とその$p$に対する$\frac{1}{p}$の循環節の長さの関係を導き、6つの$p$の値を全て答えよ。

(2)$p$を奇素数とし、$\frac{1}{p}$を2進数で表示したときに最大で1が連続して並ぶ個数を$f(p)$とおく。例えば$\frac{1}{3}=0.01010…_{(2)}$より$f(3)=1$である。(1)を満たす$p$の中で$f(p)$が最大となるのは$p$がいくらのときか。Midyの定理を用いることによって求め、その値を答えよ。


(※)循環節とは、循環小数の繰り返される数字の列のうちその長さが最小でありかつその先頭が最も先に来るようなもののことである。例えば$\frac{1}{3}=0.01010…_{(2)}$となり、このときの循環節は$01$であり、$0101$や$10$は循環節とならない。


解答形式

(1)の全ての答えを小さい順に1~6行目に半角数字で入力してください。また、(2)の答えを7行目に半角数字で入力してください。

二等分

okapin 自動ジャッジ 難易度:
4年前

21

問題文

中心$O$, 直径$AB$とする円の$A,B$以外の円周上の点$C$を取り, $\angle BAC=\theta \ (0^\circ<\theta <90^\circ)$ とする。
このとき, 線分$OD$が線分$AC$によって二等分されるような点$D$が円周上に取れるような$\theta$の取りうる範囲を求めよ。

解答形式

求める$\theta$の範囲は$a^\circ<\theta\leq b^\circ$となります。1行目に$a$, 2行目に$b$を半角数字で入力してください。

Chocolate

okapin 自動ジャッジ 難易度:
4年前

10

問題文

おかぴんはチョコレート入りの袋が3袋入った箱を持っていて、これから食べようとしています。
しかし、おかぴんは怠惰なので食べ終わった空の袋を捨てずに、再び箱の中に入れてしまいます。
箱の中から1袋ずつ取り出して、それがチョコレートの入った袋だったなら食べて箱の中に空の袋を戻し、それが空の袋だったなら食べずにそのまま箱の中に戻す、という試行を繰り返します。
チョコレートの入った袋を取り出す確率も空の袋を取り出す確率も同様に確からしいとするとき、箱の中の全てのチョコレートを食べ終えるまでの試行回数の期待値を求めてください。

解答形式

答えは$\frac{\fboxア}{\fboxイ}$(ただし既約分数)となります。$\fboxア\fboxイ$に入る数字をそれぞれ1,2行目に半角で入力してください。

Almost Linear

okapin 自動ジャッジ 難易度:
4年前

13

問題文

$n$を2以上の整数とし, $f(x)=\sqrt[n]{x^n+nx^{n-1}} (x\geq0)$を考える。

$(1)$ $x$を正の整数とするとき, $f(x)$の値が整数でないことを示せ。

$(2)$ $y=f(x)$, $x$軸, $x=m-1$ ($m$は正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。

解答形式

$(2)$ で $m=100$ のときの答えを半角数字で入力してください。

F-ガンマ1/4

halphy 自動ジャッジ 難易度:
4年前

13

問題文

$n=0, 1,\cdots$ に対して

\begin{equation}
I_n=\int_0^1 \frac{x^n}{\sqrt{1-x^4}}dx
\end{equation}

と定める。この広義積分は収束することが知られている。

任意の $n=0,1,\cdots$ に対して
\begin{equation}
I_{n+\fbox{ア}}=\frac{n+\fbox{イ}}{n+\fbox{ウ}}I_n
\end{equation}が成り立つ(ただし $\fbox{ア}$ は $0$ でない)。これを利用すると

\begin{equation}
\prod_{n=1}^{\infty} \left[1-\frac{4}{(4n-1)^2}\right]=\frac{\fbox{エ}\;\pi^{\fbox{オ}}}{\alpha^{\fbox{カ}}}
\end{equation}が導かれる。ここで $\alpha$ は

\begin{equation}
\alpha=\int_0^{\infty} t^{-3/4}e^{-t}dt=\Gamma\left(\frac{1}{4}\right)
\end{equation}で定義される定数である(この広義積分は収束することが知られている)。

注意事項

以下の事実は証明なしに用いてよい。

  • 実数 $x>0$ に対して,広義積分
    \begin{equation}
    \Gamma(x) := \int_0^{\infty} t^{x-1}e^{-t}\;dt
    \end{equation}は収束する。
  • 実数 $x>0$ に対して
    \begin{equation}
    \Gamma(x+1)=x\Gamma(x)
    \end{equation}が成り立つ。
  • 実数 $x, y>0$ に対して
    \begin{equation}
    \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}=\int_0^1 t^{x-1}(1-t)^{y-1}\;dt
    \end{equation}が成り立つ。ただし,右辺の広義積分は収束することが知られている。
  • 実数 $0<x<1$ に対して
    \begin{equation}
    \Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin\pi x}
    \end{equation}が成り立つ(相反公式)。

解答形式

$\fbox{ア}$ 〜 $\fbox{カ}$ には,半角数字 0 - 9 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{カ}$ に当てはまるものを,改行区切りで入力してください。

Sandwich+

baba 自動ジャッジ 難易度:
4年前

9

問題文

https://pororocca.com/problem/19/
こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

二等分2

okapin 自動ジャッジ 難易度:
4年前

4

問題文

$xy$平面において点$O$を中心とする単位円上に異なる2点を取り、それぞれ$P_0,Q$とする(ただし$P_0,O,Q$は一直線上にないものとする)。また、$\angle P_0OQ$のうち小さい方の角を$\theta$とする$(0<\theta<\pi)$。
これから、以下の操作を$i=1,2,3,…,n$について計$n$回行う。

(操作)
弧$P_{i-1}Q$のうち短い方の弧を2等分するような単位円上の点を$P_i$とし、$\triangle P_{i-1}P_iQ$の面積を$S_i$とする。

このとき、
$$S_i=\sin\frac{\theta}{\fbox{ア}^i}-\frac{1}{2} \sin\frac{\theta}{\fbox{イ}^{i-1}}$$となるので、
$$\sum_{i=1}^n2^{i-1}S_i=\frac{1}{2}\left(\fbox{ウ}^n\sin\frac{\theta}{\fbox{エ}^n}-\sin\theta\right)$$となる。ここで$n\to\infty$とすると
右辺の極限値は、
$$\frac{1}{2}(\theta-\sin\theta)$$となり扇形$P_0OQ$から$\triangle P_0OQ$を取り除いた図形の面積に収束することが分かる(図形的にも明らか)。

解答形式

$\fbox{ア}$~$\fbox{エ}$に入る整数を半角で1,2,…行目に入力してください。


問題文

$a$ を実数の定数とする。正の実数値をとる関数 $y(x)$ は何回でも微分可能で、

$$
\begin{cases}
2yy''''+(y'')^2=2y'y'''+a & (x \in {\mathbb R})\\
y'(0)=y''(0)=0 \\
y'''(0)=y''''(0)=1
\end{cases}
$$

を満たすとする。$\displaystyle a=\frac{50}{17}$ のとき、($x$ が実数全体を動くときの)$y(x)$ の最小値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエオ}}$ である。

解答形式

ア〜オには、0から9までの数字が入る。
文字列「アイウエオ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。