Loading [MathJax]/jax/output/CommonHTML/jax.js

hinu積分02

hinu 採点者ジャッジ 難易度: 数学
2020年6月6日12:05 正解数: 1 / 解答数: 1 (正答率: 100%) ギブアップ不可

全 1 件

回答日時 問題 解答者 結果
2020年6月6日19:34 hinu積分02 halphy
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

Roly Poly

halphy 自動ジャッジ 難易度:
4年前

2

問題文

mn を互いに素な自然数とします.実数係数多項式 f(x) が次の性質をもっているとき,f(x)m,n-生成の多項式と呼ぶことにします.

  • 性質:すべての実数係数多項式 g(x)に対して,f(x)g(x)=h(xm,xn) となるような実数係数の2変数多項式 h(x,y) が存在する.

xk がすべての 10,n-生成の多項式を割り切るような最大の自然数 k


です.ただし,単項式も多項式に含まれるとします.

解答形式

センター試験方式です.ア,イ,ウにはそれぞれ 0,1,2,3,4,5,6,7,8,9 および -,a,b,c,d のいずれか1文字が当てはまります.ア,イ,ウに 1, 2, 3 が当てはまるなら,123 と回答してください.

円周率 1

hinu ジャッジなし 難易度:
4年前

4

問題文

π1000π10013.13845 よりも大きいことを示せ

[C] Soft Spring

masorata 自動ジャッジ 難易度:
15月前

3

問題文

a>0 を定数とする。t0 で定義された実数値関数 x(t) について、以下の微分方程式の初期値問題を考える:

{x(t)=x(t)(1+{x(t)}2)2   (t0)x(0)=24, x(0)=a

(1)limt+x(t)=+ となる a の範囲は、a である。
(2)a= のとき、x(t)=34 となる t の値は t=オカ+log2 である。ただし log は自然対数とする。

解答形式

ア〜クには、0から9までの数字が入る。同じ文字の空欄には同じ数字が入る。
(1)の答えとして、文字列「アイウ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「エオカキク」を半角で2行目に入力せよ。
ただし、分数はそれ以上約分できない形で、根号の中身が最小になるように答えよ。


問題文

N を正の整数、c>0 を定数とする。実数の組 (t1,t2,,tN) に対して関数

fn(t1,t2,,tN)=tn(1tn)(c(1+tn)Ni=1ti)   (n=1,2,,N)

を考える。また、N×N 行列 J(t1,t2,,tN)

J(t1,t2,,tN)=(f1t1f1tNfNt1fNtN)

と定義する。

N=1000, c=10001.23 として、以下の問いに答えよ。

(1)1000個の実数の組 (x1,x2,,x1000) であって、x1x2x1000 かつ

fn(x1,x2,,x1000)=0   (n=1,2,,1000)

を満たすものはいくつあるか。

(2)(1)で考えた組のうち、J(x1,x2,,x1000) の固有値の実部がすべて負であるようなものはいくつあるか。

解答形式

(1)の答えを半角数字で1行目に入力せよ。
(2)の答えを半角数字で2行目に入力せよ。

[B] Symmetric Concavity

masorata 自動ジャッジ 難易度:
15月前

3

問題文

関数 f:(0,)(0,)C2級で、任意の x>0 に対して

f(1)=1,  f(1x)=f(x)x,  d2dx2f(x)0,  d2dx2(1f(1x))0

をすべて満たすとする。このような f に対し

I[f]=212f(x)dx

を考える。

(1)I[f] の最大値は アイウエ である。
(2)I[f] の最小値は log である。ただし log は自然対数である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」をすべて半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキ」をすべて半角で2行目に入力せよ。
ただし、対数の中身が最小となるように答えよ。

Sandwich+

baba 自動ジャッジ 難易度:
4年前

9

問題文

https://pororocca.com/problem/19/
こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

[E] minimum value (hard)

okapin 自動ジャッジ 難易度:
4年前

5

問題文

a,ba>1,b>1を満たす実数とする。
θ0θ<2πの範囲を動くときf(θ)=a22acosθ+1+b22bsinθ+1の最小値がa2+b2となるような(a,b)の存在範囲をab平面に図示したとき、その領域の面積を求めよ。

解答形式

整数または既約分数で答えてください。
半角で入力してください。

既約モニック多項式の個数

shakayami 自動ジャッジ 難易度:
4年前

23

問題文

F7を位数7の有限体とする。このときF7係数の3次多項式であって既約かつモニックであるものはいくつ存在するか?

解答形式

半角数字で入力してください。

Almost Linear

okapin 自動ジャッジ 難易度:
4年前

13

問題文

nを2以上の整数とし, f(x)=nxn+nxn1(x0)を考える。

(1) xを正の整数とするとき, f(x)の値が整数でないことを示せ。

(2) y=f(x), x軸, x=m1 (mは正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。

解答形式

(2)m=100 のときの答えを半角数字で入力してください。

[F] endless sequence

okapin 自動ジャッジ 難易度:
4年前

9

問題文

(1)pを奇素数とし、1pを2進数で表示したときの循環節(※)が2以上8以下であるようなpは6つ存在する。フェルマーの小定理を用いてpとそのpに対する1pの循環節の長さの関係を導き、6つのpの値を全て答えよ。

(2)pを奇素数とし、1pを2進数で表示したときに最大で1が連続して並ぶ個数をf(p)とおく。例えば13=0.01010(2)よりf(3)=1である。(1)を満たすpの中でf(p)が最大となるのはpがいくらのときか。Midyの定理を用いることによって求め、その値を答えよ。


(※)循環節とは、循環小数の繰り返される数字の列のうちその長さが最小でありかつその先頭が最も先に来るようなもののことである。例えば13=0.01010(2)となり、このときの循環節は01であり、010110は循環節とならない。


解答形式

(1)の全ての答えを小さい順に1~6行目に半角数字で入力してください。また、(2)の答えを7行目に半角数字で入力してください。

[D] monotonous decrease

Benzenehat 自動ジャッジ 難易度:
4年前

15

問題文

k0以上の実数, eを自然対数の底とする。数列an
an=n!ennn+k
と定める。任意の自然数nに対して, an+1<anが成り立つような最小のkを求めよ。

解答形式

整数または既約分数で答えてください。

[A] Triple Matrix

masorata 自動ジャッジ 難易度:
15月前

16

問題文

正の整数 a,b,c

(110010001)a(100011001)b(101010001)c=(12020240124001)

を満たすとき、a+b+c の値を求めよ。

解答形式

半角数字で1行目に入力せよ。